Skip to main content
Log in

Relaxation Motion and Possible Memory of Domain Structures in Barium Titanate Ceramics Studied by Mechanical and Dielectric Losses

  • Published:
Journal of Electroceramics Aims and scope Submit manuscript

Abstract

The relaxation motion and memory effect of domain structures have been investigated using mechanical and dielectric loss measurements in BaTiO3 ceramics with grains sizes varied from 1 μm to 50 μm. The measurements of mechanical loss, elastic modulus, dielectric loss and permittivity show that each phase transition induces a loss peak and an anomaly in the dielectric constants and elastic modulus, furthermore, a number of relaxation loss peaks due to ferroelectric domains in the samples with large grain have been observed. All the relaxation peaks can be analysed by Arrhenius relationship for a wide range of frequency from 10−2 to 106 Hz. The activation energies of relaxation peaks have been determined as 0.92 eV, 0.68 eV, 0.47 eV, and 0.29 eV for the peaks located in the tetragonal, orthorhombic, and rhombohedral phase, with Arrhenius perfactor in the order of 10−13 s. Moreover, one relaxation process is insensitive to ferroelectric phase transitions, and it can exist in all the ferroelectric phases. This implies a possible memory effect of ferroelectric domain structures. Such a motion of domain wall is limited in fine-grained materials. Effect of vacuum annealing on the relaxation peak in the tetragonal phase is also studied to clarify the mechanisms of the peak. These relaxation peaks could be explained by the interaction between different domain walls and the diffusion of oxygen vacancy in the domains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Hennings and G.J. Rosenstein, Am. Ceram. Soc., 67(4), 249 (1984).

    Google Scholar 

  2. D. Lavielle, J. Poumarat, Y. Montardi, P. Bernard, and O. Agurre-Charriol, in Second Euro-Ceramics, Augsburg, 11–14 September 1991, edited by G. Ziegler and H. Hausner (Köln: Friedhelm Kaul, DeutscheKeramische Gesellschaft e.V., 3, 1903 (1991).

    Google Scholar 

  3. B.L. Cheng, M. Gabbay, G. Fantozzi, and W. Duffy Jr., J. Alloys and Compounds., 211/212, 352 (1994).

    Google Scholar 

  4. W. Duffy Jr., B.L. Cheng, M. Gabbay, and G. Fantozzi, Metall. and Materials Trans., 26A, 1735 (1995).

    Google Scholar 

  5. B.L. Cheng, M. Gabbay, W. Duffy Jr., and G. Fantozzi, J. Materials Sci., 31, 4951 (1996).

    Google Scholar 

  6. B.L. Cheng, M. Gabbay, and G. Fantozzi, J. of Material Sci., 31, 4141 (1996).

    Google Scholar 

  7. V.S. Postnikov, V.S. Pavlov, S.A. Gridnev, and S.K. Turkov, Soviet Phys. and Solid State, 10, 1267 (1968).

    Google Scholar 

  8. E.M. Bourim, B.L. Cheng, M. Gabbay, and G. Fantozzi, Key Engineering Materials, 132–136, 1108 (1997).

    Google Scholar 

  9. E.M. Bourim, H. Tanaka, M. Gabbay, G. Fantozzi, and B.L. Cheng, J. Appl. Phys., 91(10), 6662 (2002).

    Google Scholar 

  10. T. Ikeda, J. Phys. Soc. Japan, 12, 809 (1958).

    Google Scholar 

  11. A.Yu. Kudzin, L.K. Bunina, and O.A. Grzhegorzhevskii, Soviet Phys. and Solid State, 11(8), 1939 (1970).

    Google Scholar 

  12. H.J. Hagemann, J. Phys. C. Solid State, 11, 3333 (1978).

    Google Scholar 

  13. G. Arlt, D. Hennings, and G. de With, J. Appl. Phys., 58, 1619 (1985).

    Google Scholar 

  14. T.R. Armstrong, K.A. Young, and R.C. Buchanan, J. Am. Ceram. Soc., 73(3), 700 (1990).

    Google Scholar 

  15. T.R. Armstrong, K.A. Young, and R.C. Buchanan, J. Am. Ceram. Soc., 73(5), 1268 (1990).

    Google Scholar 

  16. F. Chu, H.T. Sun, L.Y. Zhang, and X. Yao, J. Am. Ceram. Soc., 75(11), 2939 (1992).

    Google Scholar 

  17. K. Wu and W.A.J. Schulze, Am. Ceram. Soc., 75(12), 3390 (1992).

    Google Scholar 

  18. C.A. Randall, S.F. Wang, D. Laubscher, J.P. Dougherty, and W. Hueber, J. Mater. Res., 8, 871 (1993).

    Google Scholar 

  19. T.T. Fang, H.L. Hsieh, and F.S. Shiau, J. Am. Ceram Soc., 76(5), 1205 (1993).

    Google Scholar 

  20. J.X. Zhang, W.G. Zheng, P.C.W. Fung, and K.F. Liang, J. of Alloys and Compounds, 211/212, 378 (1994).

    Google Scholar 

  21. J.O. Gentner, P. Gerthsen, N.A. Schmidt, and R.E. Send, J. Appl. Phys., 49, 4485 (1978).

    Google Scholar 

  22. J. Fousek and B. Brezina, J. Phys. Soc. Jpn., 19, 830 (1964).

    Google Scholar 

  23. S. Ikegami and I. Ueda, J. Phys. Soc. Jpn., 22, 725 (1967).

    Google Scholar 

  24. Y.N. Huang, Y.N. Wang, and H.M. Shen, Phys. Rev., B46, 3290 (1992).

    Google Scholar 

  25. G. Arlt and P. Sasko, J. Appl. Phys., 51, 4956 (1980).

    Google Scholar 

  26. A.S. Nowick and B.S. Berry, Anelastic Relaxation in Crystalline Solids (Academic Press, New York, chap. 3., 1972).

    Google Scholar 

  27. G. Arlt, J. Materi. Sci., 1990, 25, 2655 (1994).

    Google Scholar 

  28. G. Arlt and N.A. Pertsev, J. Appl. Phys., 70, 2283 (1991).

    Google Scholar 

  29. L.M. Eng, H.J. Guntherodt, G.A. Schneider, U. Schneider, and J.M. Saldana, Appl. Phys. Lett., 74(2), 233 (1999).

    Google Scholar 

  30. J. Fousek and V. Janovec, A. Appl. Phys., 40, 135 (1969).

    Google Scholar 

  31. K.Y. Oh, K. Uchino, and L.E. Cross, J. Am. Ceram. Soc., 77, 2809.

  32. G.V. Lewis, C.R.A. Catlow, and R.E.W. Casselton, J. Am. Ceram. Soc., 68, 555 (1984).

    Google Scholar 

  33. S. Shirasaki, H. Yamamura, H. Haneda, K. Kakegawa, and J. Moopi, J. Chem. Phys., 73, 4640 (1980).

    Google Scholar 

  34. Q. Tan, Z. Xu, J.F. Li, and D. Viehland, Appl. Phys. Lett., 71, 1062 (1997).

    Google Scholar 

  35. L.X. He, C.E. Li, Z.Y. Wang, H.X. Yan, and W. Liu, Phys. Stat. Sol., 179, 275 (2000).

    Google Scholar 

  36. B.L. Cheng, M. Gabbay, and G. Fantozzi, Defects and Diffusion Forum, 206/207, 143 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cheng, B.L., Gabbay, M., Maglione, M. et al. Relaxation Motion and Possible Memory of Domain Structures in Barium Titanate Ceramics Studied by Mechanical and Dielectric Losses. Journal of Electroceramics 10, 5–18 (2003). https://doi.org/10.1023/A:1024007407033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024007407033

Navigation