Skip to main content
Log in

On a Fourier Method of Embedding Domains Using an Optimal Distributed Control

  • Published:
Numerical Algorithms Aims and scope Submit manuscript

Abstract

We propose a domain embedding method to solve second order elliptic problems in arbitrary two-dimensional domains. This method can be easily extended to three-dimensional problems. The method is based on formulating the problem as an optimal distributed control problem inside a rectangle in which the arbitrary domain is embedded. A periodic solution of the equation under consideration is constructed easily by making use of Fourier series. Numerical results obtained for Dirichlet problems are presented. The numerical tests show a high accuracy of the proposed algorithm and the computed solutions are in very good agreement with the exact solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.P. Astrakmantsev, Methods of fictitious domains for a second order elliptic equation with natural boundary conditions, U.S.S.R. Comput. Math. Math. Phys. 18 (1978) 114–121.

    Google Scholar 

  2. C. Atamian, Q.V. Dinh, R. Glowinski, J. He and J. Périaux, On some imbedding methods applied to fluid dynamics and electro-magnetics, Comput. Methods Appl. Mech. Engrg. 91 (1991) 1271–1299.

    Google Scholar 

  3. J. Blum, Identification et contrôle de l'équilibre du plasma dans un Tokamak, in: Modelos Matematicos en Fisica de Plasmas, eds. J.I. Diaz and A. Galindo, Memorias de la Real Academia de Ciencias, Serie de Ciencias Exactas, t. xxx (1995) pp. 23–48.

  4. C. Borgers, Domain embedding methods for the Stokes equations, Numer. Math. 57(5) (1990) 435–452.

    Google Scholar 

  5. M. Briscolini and P. Santangelo, Development of the mask method for incompressible unsteady flows, J. Comput. Phys. 84 (1989) 57–75.

    Google Scholar 

  6. B.L. Buzbee, F.W. Dorr, J.A. George and G.H. Golub, The direct solution of the discrete Poisson equation on irregular regions, SIAM J. Numer. Anal. 8 (1971) 722–736.

    Google Scholar 

  7. J. Daňková and J. Haslinger, Numerical realization of a fictitious domain approach used in shape optimization. I. Distributed controls, Appl. Math. 41(2) (1996) 123–147.

    Google Scholar 

  8. E.J. Dean, Q.V. Dinh, R. Glowinski, J. He, T.W. Pan and J. Périaux, Least squares/domain imbedding methods for Neumann problems: Applications to fluid dynamics, in: Fifth Internat. Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs and R.G. Voigteds (SIAM, Philadelphia, PA, 1991) pp. 451–475.

    Google Scholar 

  9. Q.V. Dinh, R. Glowinski, J. He, T.W. Pan and J. Périaux, Lagrange multiplier approach to fictitious domain methods: Applications to fluid dynamics and electro-magnetics, in: Fifth Internat. Symposium on Domain Decomposition Methods for Partial Differential Equations, eds. D.E. Keyes, T.F. Chan, G. Meurant, J.S. Scroggs and R.G. Voigteds (SIAM, Philadelphia, PA, 1991) pp. 151–194.

    Google Scholar 

  10. M. Elghaoui and R. Pasquetti, A spectral embedding method applied to the advection–diffusion equation, J. Comput. Phys. 125 (1996) 464–476.

    Google Scholar 

  11. M. Elghaoui and R. Pasquetti, Mixed spectral boundary element embedding algorithms for the Navier–Stokes equations in the vorticity-stream function formulation, J. Comput. Phys. 153 (1999) 82–100.

    Google Scholar 

  12. S.A. Finogenov and Y.A. Kuznetsov, Two-stage fictitious component methods for solving the Dirichlet boundary value problem, Soviet J. Numer. Anal. Math. Modelling 3 (1988) 301–323.

    Google Scholar 

  13. V. Girault, R. Glowinski and H. Lopez, Error analysis of a finite element realization of a fictitious domain/domain decomposition method for elliptic problems, East–West J. Numer. Math. 5(1) (1997) 35–56.

    Google Scholar 

  14. R. Glowinski and Y. Kuznetsov, On the solution of the Dirichlet problem for linear elliptic operators by a distributed Lagrange multiplier method, C. R. Acad. Sci. Paris Sér. Math. 327(7) (1998) 693–698.

    Google Scholar 

  15. R. Glowinski, T.-W. Pan, T.I. Hesla, D.D. Joseph and J. Périaux, A fictitious domain method with distributed Lagrange multipliers for the numerical simulation of a particulate flow, in: Domain Decomposition Methods 10, Boulder, CO, 1997, Contemporary Mathematics, Vol. 218 (Amer. Math. Soc., Providence, RI, 1998) pp. 121–137.

    Google Scholar 

  16. R. Glowinski, T.-W. Pan and J. Périaux, Lagrange multiplier/fictitious domain method for the Dirichlet problem generalization to some flow problems, Japan J. Indust. Appl. Math. 12(1) (1995) 87–108.

    Google Scholar 

  17. R. Glowinski, T.-W. Pan and J. Périaux, Fictitious domain/Lagrange multiplier methods for partial differential equations, in: Domain-Based Parallelism and Problem Decomposition Methods in Computational Science and Engineering (SIAM, Philadelphia, PA, 1995) pp. 177–192.

    Google Scholar 

  18. J. Haslinger, Fictitious domain approaches in shape optimization, in: Computational Methods for Optimal Design and Control, Arlington, VA, 1997, Progress in Systems and Control Theory, Vol. 24 (Birkhäuser, Boston, MA, 1998) pp. 237–248.

    Google Scholar 

  19. J. Haslinger and A. Klarbring, Fictitious domain/mixed finite element approach for a class of optimal shape design problems, RAIRO Modél. Math. Anal. Numér. 29(4) (1995) 435–450.

    Google Scholar 

  20. J. Haslinger and R.A.E. Makinen, Shape optimization of materially nonlinear bodies in contact, Appl. Math. 42(3) (1997) 171–193.

    Google Scholar 

  21. J.L. Lions, Optimal Control of Systems Governed by Partial Differential Equations (Springer, Berlin, 1971).

    Google Scholar 

  22. G.I. Marchuk, Y.A. Kuznetsov and A.M. Matsokin, Fictitious domain and domain decomposition methods, Soviet J. Numer. Anal. Math. Modelling 1 (1986) 3–35.

    Google Scholar 

  23. P. Neittaanmäki and D. Tiba, An embedding of domain approach in free boundary problems and optimal design, SIAM J. Control Optim. 33(5) (1995) 1587–1602.

    Google Scholar 

  24. D.P. O'Leary and O. Widlund, Capacitance matrix methods for the Helmholtz equation on general three-dimensional regions, Math. Comp. 3 (1979) 849–879.

    Google Scholar 

  25. W. Proskurowsky and O.B. Widlund, On the numerical solution of Helmholtz equation by the capacitance matrix method, Math. Comp. 30 (1979) 433–468.

    Google Scholar 

  26. D.P. Young, R.G. Melvin, M.B. Bieterman, F.T. Johnson, S.S. Samanth and J.E. Bussolety, A locally refined finite rectangular grid finite element method. Application to computational physics, J. Comput. Phys. 92 (1991) 1–66.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badea, L., Daripa, P. On a Fourier Method of Embedding Domains Using an Optimal Distributed Control. Numerical Algorithms 32, 261–273 (2003). https://doi.org/10.1023/A:1024002802603

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1024002802603

Navigation