Advertisement

Molecular Biology Reports

, Volume 30, Issue 2, pp 83–90 | Cite as

Identification of novel tropomyosin 1 genes of pufferfish (Fugu rubripes) on genomic sequences and tissue distribution of their transcripts

  • Daisuke Ikeda
  • Takuya Toramoto
  • Yoshihiro Ochiai
  • Hiroaki Suetake
  • Yuzuru Suzuki
  • Shinsei Minoshima
  • Nobuyoshi Shimizu
  • Shugo Watabe
Article

Abstract

Fugu genome database enabled us to identify two novel tropomyosin 1 (TPM1) genes through in silico data mining and isolation of their corresponding cDNAs in vivo. The duplicate TPM1 genes in Japanese pufferfish Fugurubripes suggest that additional an ancient segmental duplication or whole genome duplication occurred in fish lineage, which, like many other reported Fugu genes, showed reduction in genomic size in comparison with their human homologue. Computer analysis predicted that the coiled-coil probabilities, that were thought to be the most major function of TPM, were the same between the two TPM1 isoforms. We confirmed that the tissue expression profiles of the two TPM1 genes differed from each other, which implied that changes in expression pattern could fix duplicated TPM1 genes although the two TPM1 isoforms appear to have similar function.

evolution Fugu rubripes genomic sequence tropomyosin 1 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lees-Miller JP & Helfman DM (1991) Bioessays 13: 429–437.Google Scholar
  2. 2.
    Perry SV (2001) J. Muscle Res. Cell Motil. 22: 5–49.Google Scholar
  3. 3.
    Wang YC & Rubenstein PA (1992) J. Biol. Chem. 267: 12004–12010.Google Scholar
  4. 4.
    Goodwin LO, Lees-Miller JP, Leonard MA & Helfman DM (1991) J. Biol. Chem. 266: 8408–8415.Google Scholar
  5. 5.
    Dufour C, Weinberger RP, Schevzov G & Gunning P (1998) J. Biol. Chem. 273: 18547–18555.Google Scholar
  6. 6.
    Beisel KW & Kennedy JE (1994) Gene 143: 251–256.Google Scholar
  7. 7.
    Helfman DM, Cheley S, Kuismanen E & Yamawaki-Kataoka Y (1986) Mol. Cell. Biol. 6: 3582–3595.Google Scholar
  8. 8.
    Wieczorek DF, Smith CW & Nadal-Ginard B (1988) Mol. Cell. Biol. 8: 679–694.Google Scholar
  9. 9.
    Lees-Miller JP, Goodwin LO & Helfman DM (1990) Mol. Cell. Biol. 10: 1729–1742.Google Scholar
  10. 10.
    Cooley BC & Bergtrom G (2001) Arch. Biochem. Biophys. 390: 71–77.Google Scholar
  11. 11.
    Blanchard EM, Iizuka K, Christe M, Conner DA, Geisterfer-Lowrance A, Schoen FJ, Maughan DW & Seidman JG (1997) Circ. Res. 81: 1005–1010.Google Scholar
  12. 12.
    Rethinasamy P, Muthuchamy M, Hewett T, Boivin G, Wolska BM, Evans C & Wieczorek DF (1998) Circ. Res. 82: 116–23.Google Scholar
  13. 13.
    Ochiai Y, Ahmed K, Ahsan MN, Funabara D & Watabe S (2001) Fish. Sci. 67: 556–558.Google Scholar
  14. 14.
    Brenner S, Elgar G, Sandford R, Macrae A & Aparicio S (1993) Nature 366: 265–268.Google Scholar
  15. 15.
    Venkatesh B, Gilligan P & Brenner S (2000) FEBS Lett. 476: 3–7.Google Scholar
  16. 16.
    Clark MS, Smith SF & Elgar G (2001) Mar. Biotechnol. 3: 130–140.Google Scholar
  17. 17.
    Elgar G, Sandford R, Aparicio S, Macrae A & Brenner S (1996) Trends Genet. 12: 145–150.Google Scholar
  18. 18.
    Elgar G (1996) Hum. Mol. Genet. 5: 1437–1442.Google Scholar
  19. 19.
    Aparicio S, Chapman J, Stupka E, Putnam N, Chia JM, Dehal P, Christoffels A, Rash S, Hoon S, Smit AF, Sollewijn Gelpke MD, Roach J, Oh T, Ho IY, Wong M, Detter C, Verhoef F, Predki P, Tay A, Lucas S, Richardson P, Smith SF, Clark MS, Edwards YJ, Doggett N, Zharkikh A, Tavtigian SV, Pruss D, Barnstead M, Evans C, Baden H, Powell J, Glusman G, Rowen L, Hood L, Tan YH, Elgar G, Hawkins T, Venkatesh B, Rokhsar D & Brenner S (2002) Science 297: 1301–1310.Google Scholar
  20. 20.
    Kinoshita S, Kaneko G, Lee JH, Kikuchi K, Yamada H, Takeya H, Itoh Y & Watabe S (2001) Eur. J. Biochem. 268: 4599–4609.Google Scholar
  21. 21.
    Thompson JD, Higgins DG & Gibson TJ (1994) Nucleic Acids Res. 22: 4673–4680.Google Scholar
  22. 22.
    Saitou N & Nei M (1987) Mol. Biol. Evol. 4: 406–25.Google Scholar
  23. 23.
    Schwartz S, Zhang Z, Frazer KA, Smit A, Riemer C, Bouck J, Gibbs R, Hardison R & Miller W (2000) Genome Res. 10: 577–586.Google Scholar
  24. 24.
    Lupas A, Van Dyke M & Stock J (1991) Science 252: 1162–1164.Google Scholar
  25. 25.
    Sonnhammer EL & Durbin R, 1995. Gene 167: GC1–10.Google Scholar
  26. 26.
    Wingender E, Chen X, Fricke E, Geffers R, Hehl R, Liebich I, Krull M, Matys V, Michael H, Ohnhauser R, Pruss M, Schacherer F, Thiele S and Urbach S, 2001. Nucleic Acids Res 29: 281–283.Google Scholar
  27. 27.
    Venkatesh B, Tay BH & Brenner S (1996) J. Mol. Biol. 259: 655–665.Google Scholar
  28. 28.
    Naito T, Saito Y, Yamamoto J, Nozaki Y, Tomura K, Hazama M & Brenner S (1998) Proc. Natl. Acad. Sci. U.S.A. 95: 5178–5181.Google Scholar
  29. 29.
    Gaillard C, Theze N, Hardy S, Allo MR & Thiebaud P (1998) Dev. Genes Evol. 207: 435–445.Google Scholar
  30. 30.
    Duriez P, Lesimple M & Hardy S (2000) DNA Cell Biol. 19: 365–376.Google Scholar
  31. 31.
    Villard L, Tassone F, Crnogorac-Jurcevic T & Gardiner K (1998) Gene 210: 17–24.Google Scholar
  32. 32.
    Tassone F, Villard L & Gardiner K (1999) Gene 226: 211–223.Google Scholar
  33. 33.
    Kehrer-Sawatzki H, Maier C, Moschgath E & Krone W (1998) Gene 222: 145–153.Google Scholar
  34. 34.
    Smith SF, Metcalfe JA & Elgar G (2001) Gene 265: 195–204.Google Scholar
  35. 35.
    Aparicio S (2000) Trends Genet. 16: 54–56.Google Scholar
  36. 36.
    Amores A, Force A, Yan YL, Joly L, Amemiya C, Fritz A, Ho RK, Langeland J, Prince V, Wang YL, Westerfield M & Postlethwait JH (1998) Science 282: 1711–1714.Google Scholar
  37. 37.
    Force A, Lynch M, Pickett FB, Amores A, Yan YL & Postlethwait J, 1999. Genetics 151: 1531–1545.Google Scholar
  38. 38.
    Suzuki Y, Taira H, Tsunoda T, Mizushima-Sugano J, Sese J, Hata H, Ota T, Isogai T, Tanaka T, Morishita S, Okubo K, Sakaki Y, Nakamura Y & Sugano S (2001) EMBO Rep. 2: 388–393.Google Scholar
  39. 39.
    Ramji DP, Tadros MH, Hardon EM & Cortese R, 1991. Nucleic Acids Res 19: 1139–1146.Google Scholar
  40. 40.
    Taylor MV, 1991. Nucleic Acids Res 19: 2669–2675.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Daisuke Ikeda
    • 1
  • Takuya Toramoto
    • 1
  • Yoshihiro Ochiai
    • 1
  • Hiroaki Suetake
    • 2
  • Yuzuru Suzuki
    • 2
  • Shinsei Minoshima
    • 3
  • Nobuyoshi Shimizu
    • 3
  • Shugo Watabe
    • 1
  1. 1.Laboratory of Aquatic Molecular Biology and Biotechnology, Graduate School of Agricultural and Life SciencesUniversity of Tokyo, BunkyoTokyoJapan
  2. 2.Fisheries Laboratory, Graduate School of Agricultural and Life SciencesUniversity of Tokyo, HamanaShizuokaJapan
  3. 3.Department of Molecular BiologyKeio University School of Medicine, ShinjukuTokyoJapan

Personalised recommendations