Skip to main content
Log in

Interaction of bacteriochlorophyll with the LH1 and PufX polypeptides of photosynthetic bacteria: use of chemically synthesized analogs and covalently attached fluorescent probes

  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The protein components of the reaction center (RC) and core light-harvesting (LH 1) complexes of photosynthetic bacteria have evolved to specifically, but non-covalently, bind bacteriochlorophyll (Bchl). The contribution to binding of specific structural elements in the protein and Bchl may be determined for the LH 1 complex because its subunit can be studied by reconstitution under equilibrium conditions. Important to the determination and utilization of such information is the characterization of the interacting molecular species. To aid in this characterization, a fluorescent probe molecule has been covalently attached to each of the LH 1 polypeptides. The fluorescent probes were selected for optimal absorption and emission properties in order to facilitate their unique excitation and to enable the detection of energy transfer to Bchl. Oregon Green 488 carboxylic acid and 7-diethylaminocoumarin-3-carboxylic acid seemed to fulfill these requirements. Each of these probes were utilized to derivatize the LH1 β-polypeptide of Rhodobacter sphaeroides. It was demonstrated that the β-polypeptides did not interact with each other in the absence of Bchl. When Bchl was present, the probe-labeled β-polypeptides interacted with Bchl to form subunit-type complexes much as those formed with the native polypeptides. Energy transfer from the probe to Bchl occurred with a high efficiency. The α-polypeptide from LH 1 of Rb. sphaeroides and that from Rhodospirillum rubrum were also derivatized in the same manner. Since these polypeptides do not oligomerize in the absence of a β-polypeptide, reversible binding of a single Bchl to a single polypeptide could be measured. Dissociation constants for complex formation were estimated. The relevance of these data to earlier studies of equilibria involving subunit complexes is discussed. Also involved in the photoreceptor complex of Rb. sphaeroides and Rhodobacter capsulatus is another protein referred to as PufX. Two large segments of this protein were chemically synthesized, one reproducing the amino acid sequence of the core segment predicted for Rb. sphaeroides PufX and the other reproducing the amino acid sequence predicted for the core segment of Rb. capsulatus PufX. Each polypeptide was covalently labeled with a fluorescent probe and tested for energy transfer to Bchl. Each was found to bind Bchl with an affinity similar to the affinity of the LH 1 polypeptides for Bchl. It is suggested that PufX binds Bchl and interacts with a Bchlċα-polypeptide component of LH 1 to truncate, or interupt, the LH 1 ring adjacent to the location of the QB binding site of the RC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arluison V, Seguin J and Robert B (2002) The reaction order of the dissociation reaction of the B820 subunit of Rhodospirillum rubrum light-harvesting I complex. FEBS Lett 516: 40–42

    Article  PubMed  CAS  Google Scholar 

  • Barz WP, Verméglio A, Francia F, Venturoli G, Melandri BA and Oesterhelt D (1995) Role of PufX protein in photosynthetic growth of Rhodobacter sphaeroides. 2. PufX is required for effi-cient ubiquinone/ubiquinol exchange between the reaction center QB site and the cytochrome bc1 complex. Biochemistry 34: 15248–15258

    Article  PubMed  CAS  Google Scholar 

  • Berger G, Wollenweber AM, Kleo J, Andrianambinintsoa S and Mantele WG (1987) A rapid preparative method for purification of bacteriochlorophyll A and B. J Liq Chromatogr 10: 1519–1531.

    CAS  Google Scholar 

  • Brunisholz RA, Cuendet PA, Theiler R and Zuber H (1981) The complete amino acid sequence of the single light harvesting protein from chromatophores of Rhodospirillum rubrum G-9+. FEBS Lett 129: 150–154.

    Article  CAS  Google Scholar 

  • Brunisholz RA, Suter F and Zuber H (1984) The light-harvesting polypeptides of Rhodospirillum rubrum. I. The amino-acid sequence of the second light-harvesting polypeptide B 880-β (B 870-β) of Rhodospirillum rubrum S 1 and the carotenoidless mutant G-9+. Aspects of the molecular structure of the two light-harvesting polypeptides B880-α (B 870-α) and B 880-β (B 870-β) and of the antenna complex B 880 (B870) from Rhodospirillum rubrum. Hoppe-Seyler's Z. Physiol Chem 365: 675–688

    PubMed  CAS  Google Scholar 

  • Chang MC, Meyer L and Loach PA (1990a) Isolation and characterization of a structural subunit from the core light-harvesting complex of Rhodobactor sphaeroides 2.4.1 and puc705-BA. Photochem Photobiol 52: 873–881

    PubMed  CAS  Google Scholar 

  • Chang MC, Callahan PM, Parkes-Loach PS, Cotton T and Loach PA (1990b) Spectroscopic Characterization of the light-harvesting complex of Rhodospirillum rubrum and its structural subunit. Biochemistry 29: 421–429.

    Article  PubMed  CAS  Google Scholar 

  • Conroy MJ, Westerhuis WHJ, Parkes-Loach PS, Loach PA, Hunter CN and Williamson MP (2000) The solution structure of Rhodobacter sphaeroides LH 1 β reveals two helical domains separated by a more flexible region: structural consequences for the LH 1 complex. J Mol Biol 298: 83–94.

    Article  PubMed  CAS  Google Scholar 

  • Cotton TM (1976) Spectroscopic investigations of chlorophyll a as donor and acceptor: a basis for chlorophyll a interaction in vivo. PhD thesis, Northwestern University, Evanston, Illinois Creemers TMH, De Caro CA, Visschers RW, van Grondelle R and Volker S (1999) Spectral hole burning and fluorescence line narrowing in subunits of the light-harvesting complex LH 1 of purple bacteria. J Phys Chem B 103: 9770–9776

    Google Scholar 

  • Davis CM, Bustamante PL and Loach PA (1995) Reconstitution of the bacterial core light-harvesting complexes of Rhodobacter sphaeroides and Rhodospirillum rubrum with isolated α and β-polypeptides, bacteriochlorophyll a, and carotenoid. J Biol Chem 270: 5793–5804 Davis CM, Parkes-Loach PS, Cook CK, Meadows KA, Bandilla M, Scheer H and Loach PA (1996) Comparison of the structural requirements for bacteriochlorophyll binding in the core lightharvesting complexes of Rhodospirillum rubrum and Rhodobacter sphaeroides using reconstitution methodology with bacteriochlorophyll analogs. Biochemistry 35: 3072–3084

    Article  PubMed  CAS  Google Scholar 

  • Davis CM, Bustamante PL, Todd JB, Parkes-Loach PS, McGlynn P, Olsen JD, McMaster L, Hunter CN and Loach PA (1997) Evaluation of structure-function relationships in the core lightharvesting complex (LH 1) of photosynthetic bacteria by reconstitution with mutant polypeptides. Biochemistry 36: 3671–3679

    Article  PubMed  CAS  Google Scholar 

  • Farchaus JW, Gruenberg H and Oesterhelt D (1990a) Complementation of a reaction center-deficient Rhodobacter sphaeroides pufLMX deletion strain in trans with pufBALM does not restore the photosynthesis-positive phenotype. J Bacteriol 172: 977–985

    PubMed  CAS  Google Scholar 

  • Farchaus JW, Gruenberg H, Gray KA, Wachveitl J, DeHoff B, Kaplan S and Oesterhelt D (1990b) The puf B, A, L, M genes are not sufficient to restore the photosynthetic plus phenotype to a puf L, M, X deletion strain. In: Drews G and Dawes EA (eds)Molecular Biology of Membrane-Bound Complexes in Phototropic Bacteria, pp 65–76. Plenum Press, New York

    Google Scholar 

  • Francia F, Wang J, Venturoli G, Melandri BA, Barz WP and Oesterhelt D (1999) The reaction center-LH 1 antenna complex of Rhodobacter sphaeroides contains one PufX molecule which is involved in dimerization of this complex. Biochemistry 38: 6834–6845

    Article  PubMed  CAS  Google Scholar 

  • Francia F, Wang J, Zischka H, Venturoli G and Oesterhelt D (2002) Role of the N-and C-terminal regions of the PufX protein in the structural organization of the photosynthetic core complex of Rhodobacter sphaeroides. Eur J Biochem 269: 1877–1885

    Article  PubMed  CAS  Google Scholar 

  • Frese RN, Olsen JD, Branvall R, Westerhuis WHJ, Hunter CN and van Grondelle R (2000) The long-range supraorganization of the bacterial photosynthetic unit: a key role for PufX. Proc Natl Acad Sci USA 97: 5197–5202

    Article  PubMed  CAS  Google Scholar 

  • Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes (2001) http://www.probes.com/handbook/

  • Harbury HA and Loach PA (1960) Interaction of nitrogenous ligands with heme peptides from mammalian cytochrome c. J Biol Chem 235: 3646–3653

    PubMed  CAS  Google Scholar 

  • Heller BA and Loach PA (1990) Isolation and characterization of a subunit form of the b875 light-harvesting complex from Rhodobacter capsulatus. Photochem Photobiol 51: 621–627

    PubMed  CAS  Google Scholar 

  • Jirsakova V and Reiss-Husson F (1993) Isolation and characterization of the core light-harvesting complex B875 and its subunit form, B820, from Rhodocyclus gelatinosus. Biochim Biophys Acta 1138: 301–308

    Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W and Krauss N (2001) Three-dimensional structure of cyanobacterial Photosystem I at 2.5°A resolution. Nature 411: 909–917

    Article  PubMed  CAS  Google Scholar 

  • Kehoe JW, Meadows KA, Parkes-Loach PS and Loach PA (1998) Reconstitution of light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides: II. Determ-ination of structural features that stabilize complex formation and implications on the structure of the subunit complex. Biochemistry 37: 3418–3428

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi J, Asakura T, Loach PA, Parkes-Loach PS, Hunter CN, Conroy MJ and Williamson MP (1999) A light-harvesting antenna protein retains its folded conformation in the absence of protein-lipid and protein-pigment interactions. Biopolymers 49: 361–372

    Article  PubMed  CAS  Google Scholar 

  • Kiley PJ, Donohue TJ, Havelka WA and Kaplan S (1987) Molecular genetics of photosynthetic membrane biosynthesis in Rhodobacter sphaeroides. J Bacteriol 169: 742–750

    PubMed  CAS  Google Scholar 

  • Lee JK, Kiley PJ and Kaplan S (1989) Posttranscriptional control of puc operon expression of B800-850 light-harvesting complex formation in Rhodobacter sphaeroides. J Bacteriol 171: 3391– 3405

    PubMed  CAS  Google Scholar 

  • Lilburn TG, Haith CE, Prince RC and Beatty JT (1992) Suppressor mutants of the photosynthetically incompetent pufX deletion mutant Rhodobacter capsulatus) RC6(pTL2). Biochim. Biophys. Acta 1100: 160–170

    Article  PubMed  CAS  Google Scholar 

  • Lilburn TG, Prince RC and Beatty JT (1995) Mutation of the Ser2 codon of the light-harvesting B870 alpha polypeptide of Rhodobacter capsulatus partially suppresses the pufX phenotype. J Bacteriol 177: 4593–4600

    PubMed  CAS  Google Scholar 

  • Li YF, Zhou W, Blankenship RE and Allen JP (1997) Crystal structure of the bacteriochlorophyll a protein from Chlorobium tepidum. J Mol Biol 271, 456–471

    Article  PubMed  CAS  Google Scholar 

  • Loach PA (1997) Photosynthesis: unmasking the trap. Photochem Photobiol 65S: 134S–141S Loach PA (2000) Supramolecular complexes in photosynthetic bacteria. Proc Natl Acad Sci USA 97: 5016–5018

    Google Scholar 

  • Loach PA and Parkes-Loach PS (1995) Structure-function relationships in core light-harvesting complexes (LH 1) as determined by characterization of the structural subunit and by reconstitution experiments. Advances in photosynthesis: anoxygenic photosynthetic bacteria. In Blankenship RE, Madigan MT and Bauer CD (eds) Anoxygenic Photosynthetic Bacteria, pp 437–471. Kluwer Academic Publishers, Dordrecht, The Netherlands

    Google Scholar 

  • Loach PA, Parkes PS, Miller JF, Hinchigeri S and Callahan PM (1985) Structure-function relationships of the bacteriochlorophyll-protein light-harvesting complex of Rhodospirillum rubrum. In: Arntzen C, Bogorad L, Bonitz S and Steinback K, (eds) Molecular Biology of the Photosynthetic Apparatus, Cold Spring Harbor Symposium, pp 197–209. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York

  • Loach PA, Parkes-Loach PS, Davis CM and Heller BA (1994) Probing protein structural requirements for formation of the core light-harvesting complex of photosynthetic bacteria using hybrid reconstitution methodology. Photosynth Res 40: 231–245

    Article  CAS  Google Scholar 

  • Meadows KA, Iida K, Kazuichi T, Recchia PA, Heller BA, Antonio B, Nango M and Loach P (1995) Enzymatic and chemical cleavage of the core light-harvesting polypeptides of photosynthetic bacteria: determination of the minimal polypeptide size and structure required for subunit and light-harvesting complex formation. Biochemistry. Biochemistry 34: 1559–1574

    Article  PubMed  CAS  Google Scholar 

  • Meadows KA, Parkes-Loach PS, Kehoe JW and Loach PA (1998) Reconstitution of light-harvesting complexes of photosynthetic bacteria using chemically synthesized polypeptides: I. Minimal requirements for subunit formation. Biochemistry 37: 3411– 3417

    Article  PubMed  CAS  Google Scholar 

  • Meckenstock RU, Brunisholz RA and Zuber H (1992) The light-harvesting core-complex and the B820-subunit from Rhodopseudomonas marina. Part 1. Purification and characterization. FEBS Lett 311: 128–134

    Article  PubMed  CAS  Google Scholar 

  • McGlynn P, Westerhuis WHJ, Jones MR and Hunter CN (1996) Consequences for the organization of reaction center-light harvesting antenna 1 (LH 1) core complexes of Rhodobacter spaeroides arising from deletion of amino acid residues from the c terminus of the LH 1 α polypeptide. J Biol Chem 271: 3285–3292

    Article  PubMed  CAS  Google Scholar 

  • Michalski TJ, Hunt JE, Bradshaw C, Wagner AM, Norris JR and Katz JJ (1988) Enzyme-catalyzed organic synthesis: transesterification reactions of chlorophyll a, bacteriochlorophyll a, and derivatives with chlorophyllase. J Am Chem Soc 110: 5888– 5891

    Article  CAS  Google Scholar 

  • Miller JF, Hinchigeri SB, Parkes-Loach PS, Callahan PM, Sprinkle JR, Riccobono JR and Loach PA (1987) Isolation and characterization of a subunit form of the light-harvesting complex of Rhodospirillum rubrum. Biochemistry 26: 5055–5062

    Article  PubMed  CAS  Google Scholar 

  • Okamura MY and Feher G (1992) Proton transfer in reaction centers from photosynthetic bacteria. Annu Rev Biochem 61: 861–896

    Article  PubMed  CAS  Google Scholar 

  • Olsen JD, Sockalingum GD, Robert B and Hunter CN (1994) Modi-fication of a hydrogen bond to a bacteriochlorophyll a molecule in the light-harvesting 1 antenna of Rhodobacter sphaeroides. Proc Natl Acad Sci USA 91: 7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Pandit A, Visschers RW, van Stokkum IHM, Kraayenhof R and van Grondelle R (2001) Oligomerization of light-harvesting I antenna peptides of Rhodospirillum rubrum. Biochemistry 40: 12913–12924

    Article  PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Sprinkle JR and Loach PA (1988) Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately-isolated α and β-polypeptides and bacteriochlorophyll a. Biochemistry 27: 2718–2727

    Article  PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Michalski TJ, Bass WJ, Smith U and Loach PA (1990) Probing the bacteriochlorophyll binding site by reconstitution of the light-harvesting complex of Rhodospirillum rubrum with bacteriochlorophyll a analogues. Biochemistry 29: 2951–2960

    Article  PubMed  CAS  Google Scholar 

  • Parkes-Loach PS, Law CJ, Recchia PA, Kehoe J, Nehrlich S, Chen J and Loach PA (2001) Role of the core region of the pufx protein in inhibition of reconstitution of the core light-harvesting complexes of Rhodobacter sphaeroides and Rhodobacter capsulatus. Biochemistry 40: 5593–5601

    Article  PubMed  CAS  Google Scholar 

  • Parson WW (1991) Electron transfer in reaction centers. In: Scheer H (ed) Chlorophylls, pp 1153–1180. CRC Press, Ann Arbor, Michigan

    Google Scholar 

  • Pugh RJ, McGlynn P, Jones MR and Hunter CN (1998) The LH 1-RC core complex of Rhodobacter sphaeroides: interaction between components, time-dependent assembly, and topology of the PufX protein. Biochim Biophys Acta 1366, 301–316

    Article  PubMed  CAS  Google Scholar 

  • Recchia PA, Davis CM, Lilburn TG, Beatty JT, Parkes-Loach PS, Hunter CN and Loach PA (1998) Isolation of the PufX protein from Rhodobacter capsulatus and Rhodobacter sphaeroides: evidence for its interaction with the α-polypeptide of the core light harvesting complex. Biochemistry 37: 11055–11063

    Article  PubMed  CAS  Google Scholar 

  • Srivatsan N and Norris JR (2001) Electron paramagnetic resonance study of oxidized B820 complexes. J Phys Chem B 105: 12391– 12398

    Article  CAS  Google Scholar 

  • Storkel U, Creemers TMH, den Hartog FTH and Volker S (1998) Glass versus protein dynamics at low temperature studied by time-resolved spectral hole burning. J Lumin 76-77: 327–330

    Article  Google Scholar 

  • Sturgis JN and Robert R (1994) Thermodynamics of membrane polypeptide oligomerization in light-harvesting complexes and associated structural-changes. J Mol Biol 238: 445–454

    Article  PubMed  CAS  Google Scholar 

  • Sturgis JN, Olsen JD, Robert B and Hunter CN (1997) Functions of conserved tryptophan residues of the core light-harvesting complex of Rhodobacter sphaeroides. Biochemistry 36: 2772–2778

    Article  PubMed  CAS  Google Scholar 

  • Theiler R, Suter F, Wiemken V and Zuber H (1984) The lightharvesting polypeptides of Rhodopseudomonas sphaeroides R-26.1. I. Isolation, purification, and sequence analyses. Hoppe-Seyler's Z Physiol Chem 365: 703–719

    PubMed  CAS  Google Scholar 

  • Theiler R, Suter F, Pennoyer JD, Zuber H and Niederman RA (1985) Complete amino acid sequence of the B875 light-harvesting protein of Rhodopseudomonas sphaeroides strain 2.4.1. Comparison with R26.1 carotenoidless-mutant strain. FEBS Lett 184: 231–236

    Article  PubMed  CAS  Google Scholar 

  • Todd JB, Parkes-Loach PS, Leykam JF and Loach PA (1998) In vitro reconstitution of the core and peripheral light-harvesting complexes of Rhodospirillum molischianum from separately isolated components. Biochemistry 37: 17458–17468

    Article  PubMed  CAS  Google Scholar 

  • Todd JB, Recchia PA, Parkes-Loach PS, Olsen JD, Fowler GJS, McGlynn P, Hunter CN and Loach PA (1999) Minimal requirements for in vitro reconstitution of the structural subunit of lightharvesting complexes of photosynthetic bacteria. Photosynth Res 62: 85–98

    Article  CAS  Google Scholar 

  • Tonn SJ, Gogel GE and Loach PA (1977) Isolation and characterization of an organic solvent soluble polypeptide component from photoreceptor complexes of Rhodospirillum rubrum. Biochemistry 16: 877–885

    Article  PubMed  CAS  Google Scholar 

  • Van Mourik F, van der Oord CJR, Visscher KJ, Parkes-Loach PS, Loach PA, Visschers RW and van Grondelle R (1991) Exciton interactions in the light-harvesting antenna of photosynthetic bacteria studied with triplet-singlet spectroscopy and singlettriplet annihilation of the B820 subunit form of Rhodospirllum rubrum. Biochim Biophys Acta 1059: 111–119

    CAS  Google Scholar 

  • Visschers RW, Chang MC, van Mourik F, Parkes-Loach PS, Heller BA, Loach PA and van Grondelle R (1991) Fluorescence polarization and low-temperature absorption spectroscopy of a subunit form of light-harvesting complex I from purple photosynthetic bacteria. Biochemistry 30: 5734–5742

    Article  PubMed  CAS  Google Scholar 

  • Wagner-Huber R, Brunisholz RA, Bissig I, Frank G and Zuber H (1988) A new possible binding site for bacteriochlorophyll b in a light-harvesting polypeptide of the bacterium Ectothiorhodospira halochloris. FEBS Lett 233: 7

    Google Scholar 

  • Wang Z, Shimonaga M, Muraoka Y, Kobayashi M and Nozawa T (2001) Methionine oxidation and its effect on the stability of a reconstituted subunit of the light-harvesting complex from Rhodospirillum rubruim. Eur J Biochem 268: 3375–3382

    Article  PubMed  CAS  Google Scholar 

  • Youvan DC, Alberti M, Begusch H, Bylina EJ and Hearst JE (1984) Reaction center and light-harvesting I genes from Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 81: 189–192

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Law.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Law, C.J., Chen, J., Parkes-Loach, P.S. et al. Interaction of bacteriochlorophyll with the LH1 and PufX polypeptides of photosynthetic bacteria: use of chemically synthesized analogs and covalently attached fluorescent probes. Photosynthesis Research 75, 193–210 (2003). https://doi.org/10.1023/A:1023982327748

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023982327748

Navigation