Survivability of Bacteria Ejected from Icy Surfaces after Hypervelocity Impact

Abstract

Both the Saturnian and Jovian systems contain satellites with icy surfaces. If life exists on any of these icy bodies (in putative subsurface oceans for example) then the possibility exists for transfer of life from icy body to icy body. This is an application of the idea of Panspermia, wherein life migrates naturally through space. A possible mechanism would be that life,here taken as bacteria, could become frozen in the icy surface ofone body. If a high-speed impact occurred on that surface, ejectacontaining the bacteria could be thrown into space. It could thenmigrate around the local region of space until it arrived at a second icy body in another high-speed impact. In this paper we consider some of the necessary steps for such a process to occur,concentrating on the ejection of ice bearing bacteria in the initial impact, and on what happens when bacteria laden projectiles hit an icy surface. Laboratory experiments using high-speed impacts with a light gas gun show that obtaining icy ejecta with viable bacterial loads is straightforward. In addition to demonstrating the viability of the bacteria carried on the ejecta, we have also measured the angular and size distribution of the ejecta produced in hypervelocity impacts on ice. We have however been unsuccessful at transferring viablebacteria to icy surfaces from bacteria laden projectilesimpacting at hypervelocities.

This is a preview of subscription content, access via your institution.

References

  1. Arakawa M., Maeno, N., Higa, M., Iijima, Y. and Kato, M.: 1995, Ejection Velocity of Ice Impact Fragments, Icarus 118, 341–354.

    Google Scholar 

  2. Bronshten, V. A.: 1999, The Nature of the Tunguska Meteorite, Meteor. Planetary Sci. 34, 723–728.

    Google Scholar 

  3. Burchell, M. J., Brooke-Thomas, W., Leliwa-Kopystynski, J. and Zarnecki, J. C.: 1998, Hypervelocity Impact Experiments on Solid CO2 Targets, Icarus 131, 210–222.

    Google Scholar 

  4. Burchell, M. J., Cole, M. J., McDonnell, J. A. M. and Zarnecki, J. C.: 1999, Hypervelocity Impact Studies using the 2 MV Van de Graaff Accelerator and Two-stage Light Gas Gun of the University of Kent at Canterbury, Meas. Sci. Technol. 10, 41–50.

    Google Scholar 

  5. Burchell, M. J., Shrine, N. R. G., Bunch, A. and Zarnecki, J. C.: 2000, 'Exobiology: Laboratory Tests of the Impact Related Aspects of Panspermia', in I. Gilmour and C. Koeberl (eds), Impacts and the Early Earth, Springer, pp. 1–26.

  6. Burchell, M. J., Shrine, N. R. G., Mann, J., Bunch, A.W., Brandão, P., Zarnecki, J. C. and Galloway, J. A.: 2001a, Laboratory Investigations of the Survivability of Bacteria in Hypervelocity Impacts, Advan. Space Res. 28, 707–712.

    Google Scholar 

  7. Burchell, M. J., Mann, J., Bunch, A. W. and Brandão, P. F. B.: 2001b, Survivability of Bacteria in Hypervelocity Impact, Icarus 154, 545–547.

    Google Scholar 

  8. Christner, B. C., Mosley-Thompson, E., Thompson, L., Zagorodnov, V., Snadman, K. and Reeve, J. N.: 2000, Recovery and Identification of Viable Bacteria Immured in Glacial Ice, Icarus 144, 479–485.

    Google Scholar 

  9. Chyba, C. F., Thomas, P. J., Brookshaw, L. and Sagan, C.: 1990, Cometary Delivery of Organic Materials to the Early Earth, Science 249, 366–373.

    Google Scholar 

  10. Chyba, C. and Sagan, C.: 1992, Endogenous Production, Exogenous Delivery and Impact-shock Synthesis of Organic Molecules: An Inventory for the Origins of Life, Nature 355, 125–132.

    Google Scholar 

  11. Chyba, C. F., Thomas, P. J. and Zahnle, K. J.: 1993, The 1908 Tunguska Explosion: Atmospheric Disruption of a Stony Asteroid, Nature 361, 40–44.

    Google Scholar 

  12. Chyba, C. F. and Phillips, C. B.: 2002, Europa as an Abode of Life, Orig. Life Evol. Biosphere 32, 47–68.

    Google Scholar 

  13. Clark, B. C., Baker, A. L., Cheng, A. F., Clemett, S. J., Mckay, D., McSween, H. Y., Pieters, C., Thomas, P. and Zolensky, M.: 1999, Survival of Life on Asteroids, Comets and Other Small Bodies, Orig. Life Evol. Biosphere 29, 521–545.

    Google Scholar 

  14. Clark, B. C.: 2001, Planetary Interchange of BioactiveMaterial: Probability Factors and Implications, Orig. Life Evol. Biosphere 31, 185–197.

    Google Scholar 

  15. Colquhoun, J. A., Mexson, J., Goodfellow, M., Ward, A. C., Horikoshi K. and Bull, A. T.: 1998, Novel Rhodococci and other Mycolate Actinomycetes from the Deep Sea, Antonie van Leeuwenhoek 74, 27–40.

    Google Scholar 

  16. Croft, S. K.: 1981, 'Hypervelocity Impact Craters in Icy Media', Abstracts of Lunar and Planetary Science Conf. XII, pp. 190–191.

    Google Scholar 

  17. Crozier, W. D. and Hume, W.: 1957, High Velocity, Light-gas Gun, J. Appl. Phys. 28, 892–898.

    Google Scholar 

  18. Davies, R. E.: 1988, Panspermia: Unlikely, Unsupported, but Just Possible, Acta Astroanutica 17, 129–135.

    Google Scholar 

  19. English, M. A., Lara, L. M., Lorenz, R. D., Ratcliff, P. R. and Rodrigo, R.: 1996, Ablation and Chemistry of Meteoritic Materials in the Atmosphere of Titan, Adv. Space Res. 17, 157–160.

    Google Scholar 

  20. Frisch, W.: 1992, 'Hypervelocity Impact Experiments withWater Ice Targets', in J. A. N. McDonnell (ed.), Hypervelocity Impacts in Space, pub. University of Kent, U.K., pp. 7–14.

    Google Scholar 

  21. Gardner, D. J., McDonnell, J. A. M. and Collier, I.: 1997, Hole Growth Characterisation for Hypervelocity Impacts in Thin Targets, Int. J. Impact Engng. 19, 589–602.

    Google Scholar 

  22. Gladman, B. J., Burns, J. A., Duncan, M., Lee, P. and Levison, H. F.: 1996, The Exchange of Impact Ejecta between Terrestrial Planets, Science 271, 1387–1392.

    Google Scholar 

  23. Gladman, B.: 1997, Destination Earth: Martian Meteorite Delivery, Icarus 130, 228–246.

    Google Scholar 

  24. Goodfellow, M. and Alderson, G.: 1998, Editorial, Antonie Van Leeuwenhoek Int. J. Gen. Mol. Microbiol. 74, 1.

    Google Scholar 

  25. Heald, S. C., Brandão, P. F. B., Hardicre, R., and Bull, A. T.: 2001, Physiology, Biochemistry and Taxonomy of Deep-Sea Nitrile Metabolising Rhodococcus Strains, Antonie van Leeuwenhoek 80, 169–183.

    Google Scholar 

  26. Horneck, G., Rettberg, P., Reitz, G., Wehner, J., Eschweiler, U., Strauch, K., Panitz, C., Starke, V. and Baumstark-Khan, C.: 2001a, Protection of Bacterial Spores in Space, A Contribution to the Discussion of Panspermia, Orig. Life Evol. Biosphere 31, 527–547.

    Google Scholar 

  27. Horneck, G., Stöffler, D., Eschweiler, U. and Hornemann, U.: 2001b, Bacterial Spores Survive Simulated Meteorite Impact, Icarus 149, 285–290.

    Google Scholar 

  28. Kato, M., Iijima, Y., Arakawa, M., Okimura, Y., Fujimura, A., Maeno, N. and Mizutani, H.: 1995, Ice on Ice Impact Experiments, Icarus 113, 423–441.

    Google Scholar 

  29. Koschny, D. and Grün, E.: 2001, Impacts into Ice-Silicate Mixtures: Ejecta Mass and Size Distributions, Icarus 154, 402–211.

    Google Scholar 

  30. Mastrapa, R. M. E., Glanzberg, H., Head, J. N., Melosh, H. J. and Nicholson, W. L.: 2000, 'Survival of Bacillus subtilis Spores and Deinococcus radiodurans Cells Exposed to the Extreme Acceleration and Shock Predicted during Planetary Ejection, Proc. Of Lunar and Planetary Science Conf. XXXI, abstract 2045.

  31. Maurette, M.: 1998, 'Micrometeorites on the Early Earth', in A. Brack (ed.), The Molecular Origins of Life, pub. Cambridge, pp. 147–186.

  32. Melosh, H. J.: 1988, The Rocky Road to Panspermia, Nature 332, 687–688.

    Google Scholar 

  33. Melosh, H. J.: 1989, Impact Cratering, A Geological Process, Oxford University Press, pp. 74–75.

  34. Mileikowsky, C., Cucinotta, F. A., Wilson, J. W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M. and Zheng, J. Q.: 2000a, Natural Transfer of Viable Microbes in Space: 1. From Mars to Earth and Earth to Mars, Icarus 145, 391–427.

    Google Scholar 

  35. Mileikowsky, C., Cucinotta F. A., Wilson, J. W., Gladman, B., Horneck, G., Lindegren, L., Melosh, J., Rickman, H., Valtonen, M. and Zheng, J. Q.: 2000b, Risks Threatening Viable Transfer of Microbes Between Bodies in our Solar System, Planet. Space Sci. 48, 1107–1115.

    Google Scholar 

  36. Miller, S.: 1998, 'The Endogenous Synthesis of Organic Compounds', in A. Brack (ed.), The Molecular Origins of Life, pub. Cambridge, pp. 59–85.

  37. O'Brien, D. P., Geissler, P. and Greenberg, R.: 2002, A Melt-through Model for Chaos Formation on Europa, Icarus 156, 152–161.

    Google Scholar 

  38. Pierazzo, E. and Melosh, H. J.: 2000, Understanding Oblique Impacts from Experiments, Observations and Modelling, Annual Rev. Earth Planet. Sci. 28, 141–167.

    Google Scholar 

  39. Rival, M. and Mandeville, J. C.: 1999, Modelling of Ejecta Produced upon Hypervelocity Impacts, Space Debris 1, 45–57.

    Google Scholar 

  40. Weiss, B. P., Kirschvink, J. L., Baudenbacher, F. J., Vali, H., Peters, N. T., Macdonald, F. A., Wikswo, J. P.: 2000, A Low Temperature Transfer of ALH84001 from Mars to Earth, Science 290, 791–795.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mark J. Burchell.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Burchell, M.J., Galloway, J.A., Bunch, A.W. et al. Survivability of Bacteria Ejected from Icy Surfaces after Hypervelocity Impact. Orig Life Evol Biosph 33, 53–74 (2003). https://doi.org/10.1023/A:1023980713018

Download citation

  • ejecta
  • hypervelocity
  • ice
  • impact
  • life
  • Panspermia