Skip to main content
Log in

T-DNA tagging in Brassica napus as an efficient tool for the isolation of new promoters for selectable marker genes

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

A simple strategy to identify and isolate new promoters suitable for driving the expression of selectable marker genes is described. By employing a Brassica napus hypocotyl transformation protocol and a promoterless gus::nptII tagging construct, a series of 20 kanamycin-resistant tagged lines was produced. Most of the regenerated plants showed hardly any GUS activity in leaf, stem and root tissues. However, expression was readily restored in callus tissue induced on in vitro leaf segments. Genomic sequences upstream of the gus::nptII insertions were isolated via plasmid rescue. Three clones originating from single copy T-DNA lines were selected for further evaluation. The rescued plasmids were cloned as linear fragments in binary vectors and re-transformed to Brassica napus hypocotyl and Solanum tuberosum stem segments. The new sequences maintained their promoter activity, demonstrated by transient and stable GUS activity after transformation. Furthermore, the promoters provided sufficient expression of the nptII gene to yield transgenic plants when using kanamycin as selective agent. Database searching (BLASTN) revealed that the promoters have significant homology with three Arabidopsis BAC clones, one Arabidopsis cDNA and one Brassica napus cDNA. The results presented in this paper illustrate the strength of combined methods for identification, isolation and testing of new plant promoters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altenbach, S.B., Kuo, C.C., Staraci, L.C., Pearson, K.W., Wainwright, C., Georgescu, A. and Townsend, J. 1992. Accumulation of a brazil nut albumin in seeds of transgenic canola results in enhanced levels of seed protein methionine. Plant Mol. Biol. 18: 235–245.

    Google Scholar 

  • André, D., Colau, D., Schell, J., Van Montagu, M. and Hernalsteens, J.-P. 1986. Gene tagging in plants by a T-DNA insertion that generates APH(3')II plant gene fusions. Mol. Gen. Genet. 204: 512–518.

    Google Scholar 

  • Bade, J.B. and Damm, B. 1995. Agrobacterium-mediated transformation of rapeseed (Brassica napus). In: I. Potrykus and G. Spangenberg (Eds.) Gene Transfer to Plants, Springer-Verlag, Berlin, pp. 32–38.

    Google Scholar 

  • Baumann, K., De Paolis, A., Costantino, P. and Gualberti, G. 1999. The DNA binding site of the Dof protein NtBBF1 is essential for tissue-specific and auxin-regulated expression of the rolB oncogene in plants. Plant Cell 11: 323–333.

    Google Scholar 

  • Charest, P.J., Caléro, N., Lachance, D., Datla, R.S.S., Duchêsne, L.C. and Tsang, E.W.T. 1993. Microprojectile-DNA delivery in conifer species: factors affecting assessment of transient gene expression using the β-glucuronidase reporter gene. Plant Cell Rep. 12: 189–193.

    Google Scholar 

  • Datla, R.S.S., Hammerlindl, J.K., Pelcher, L.E., Crosby, W. and Selvaraj, G. 1991. A bifunctional fusion between β-glucuronidase and neomycin phosphotransferase: a broad-spectrum marker enzyme for plants. Gene 101: 239–246.

    Google Scholar 

  • De Block, M., Debrouwer, D. and Tenning, P. 1989. Transformation of Brassica napus and Brassica oleracea using Agrobacterium tumefaciens and the expression of the bar and neo genes in the transgenic plants. Plant Physiol. 91: 694–701.

    Google Scholar 

  • de Groot, M.J., Offringa, R., Groet, J., Does, M.P., Hooykaas, P.J. and van den Elzen, P.J. 1994. Non-recombinant background in gene targeting: illegitimate recombination between a hpt gene and a defective 5' deleted nptII gene can restore a Kmr phenotype in tobacco. Plant Mol. Biol. 4: 721–733.

    Google Scholar 

  • Firek, S., Ozcan, S., Warner, S.A.J. and Draper, J. 1993. A wound-induced promoter driving nptII expression limited to dedifferentiated cells at wound sites is sufficient to allow selection of transgenic shoots. Plant Mol. Biol. 22: 129–142.

    Google Scholar 

  • Flavell, R.B., Dart, E., Fuchs, R.L. and Fraley, R.T. 1992. Selectable marker genes: safe for plants? Bio/technology 10: 141–144.

    Google Scholar 

  • Fobert, P.R., Miki, B.L. and Iyer, V.N. 1991. Detection of gene regulatory signals in plants revealed by T-DNA-mediated fusions. Plant Mol. Biol. 17: 837–851.

    Google Scholar 

  • Fobert, P.R., Labbé, H., Cosmopoulos, J., Gotlob-McHugh, S., Ouellet, T., Hattori, J., Sunohara, G., Iyer, V.N. and Miki, B.L. 1994. T-DNA tagging of a seed coat-specific cryptic promoter in tobacco. Plant J 6: 567–577.

    Google Scholar 

  • Foster, E., Hattori, J., Labbe, H., Ouellet, T., Fobert, P.R., James, L.E., Iyer, V.N. and Miki, B.L. 1999. A tobacco cryptic constitutive promoter, tCUP, revealed by T-DNA tagging. Plant Mol. Biol. 41: 45–55.

    Google Scholar 

  • Fristensky, B., Balcerak, M., He, D. and Zhang, P. 1999. Expressed sequence tags from the defence response of Brassica napus to Leptosphaeria maculans. Mol. Plant Path. On-Line http://www.bspp.org.uk/mppol/1999/0301FRISTENSKY

  • Goddijn, O.J.M., Lindsey, K.,, van der Lee, F.M., Klap, J.C. and Sijmons, P.C. 1993. Differential gene expression in nematodeinduced feeding structures of transgenic plants harbouring promoter gusA fusion constructs. Plant J 4: 863–873.

    Google Scholar 

  • Grison, R., Grezesbesset, B., Schneider, M., Lucante, N., Olsen, L., Leguay, J.J. and Toppan, A. 1996. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nature Biotechnol. 14: 643–646.

    Google Scholar 

  • Herman, L., Jacobs, A., Van Montagu, M. and Depicker, A. 1990. Plant chromosome/marker gene fusion assay for study of normal and truncated T-DNA integration events. Mol. Gen. Genet. 224: 248–256.

    Google Scholar 

  • Hood, E.E., Gelvin, S.B., Melchers, L.S. and Hoekema, A. 1993. New Agrobacterium helper plasmids for gene transfer to plants. Transgenic Res. 2: 208–218.

    Google Scholar 

  • Jefferson, R.A. 1987. Assaying chimaeric genes in plants: the GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Google Scholar 

  • Jiang, C., Langridge, W.H.R. and Szalay, A.A. 1992. Identification of plant genes in vivo by tagging with T-DNA border-linked luciferase genes followed by inverse polymerase chain reaction amplification. Plant Mol. Biol. Rep. 10: 345–361.

    Google Scholar 

  • Kang, H.G. and Singh, K.B. 2000. Characterization of salicylic acid-responsive Arabidopsis Dof domain proteins: overexpression of OBP3 leads to growth defects. Plant J. 21: 329–339.

    Google Scholar 

  • Kertbundit, S., De Greve, H., Deboeck, F. and Van Montagu, M. 1991. In vivo random β-glucuronidase gene fusions in Arabidopsis thaliana. Botany 88: 5212–5216.

    Google Scholar 

  • Kertbundit, S., Linacero, R., Rouze, P., Galis, I., Macas, J., Deboeck, F., Renckens, S., Hernalsteens, J.P. and De Greve, H. 1998. Analysis of T-DNA-mediated translational β-glucuronidase gene fusions. Plant Mol. Biol. 36: 205–217.

    Google Scholar 

  • Koncz, C., Martini, N., Mayerhofer, R., Koncz-Kalman, Z., Körber, H., Redei, G.P. and Schell, J. 1989. High-frequency T-DNAmediated gene tagging in plants. Proc. Natl. Acad. Sci. USA 86: 8467–8471.

    Google Scholar 

  • Lindsey, K., Wei, W.B., Clarke, M.C., Mcardle, H.F., Rooke, L.M. and Topping, J.F. 1993. Tagging genomic sequences that direct transgene expression by activation of a promoter trap in plants. Transgenic Res. 2: 33–47.

    Google Scholar 

  • Mandal, A., Lang, V., Orczyk, W. and Palva, E.T. 1993. Improved efficiency for T-DNA-mediated transformation and plasmid rescue in Arabidopsis thaliana. Theor. Appl. Genet. 86: 621–628.

    Google Scholar 

  • Mariani, C., De Beuckeleer, M., Truettner, J., Leemans, J. and Goldberg, R.B. 1990. Induction of male sterility in plants by a chimaeric ribonuclease gene. Nature 347: 737–741.

    Google Scholar 

  • Mudge, S.R. and Birch, R.G. 1998. T-DNA tagging and characterisation of a novel meristem-specific promoter from tobacco. Aust. J. Plant Physiol. 25: 637–643.

    Google Scholar 

  • Pineiro, M., Garcia-Olmedo, F. and Diaz, I. 1994. Redox modulation of the expression of bacterial genes encoding cysteine-rich proteins in plant protoplasts. Proc. Natl. Acad. Sci. USA 91: 3867–3871.

    Google Scholar 

  • Ponstein, A.S., Bade, J.B., Verwoerd, T.C., Molendijk, L., Storms, J., Beudeker, R.F., and Pen, J. 2002. Stable expression of Phytase (phyA) in canola (Brassica napus) seeds: towards a commercial product. Molecular Breeding 10: 31–44.

    Google Scholar 

  • Poulsen, G.B. 1996. Genetic transformation of Brassica. Plant Breed. 115: 209–225.

    Google Scholar 

  • Quaedvlieg, N.E.M., Schlaman, H.R.M., Admiraal, P.C., Wijting, S.E., Stougaard, J. and Spaink, P. 1998. Fusions between green fluorescent protein and β-glucuronidase as sensitive and vital bifunctional reporters in plants. Plant Mol. Biol. 37: 715–727.

    Google Scholar 

  • Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular Cloning: A Laboratory Manual, 2nd ed. Cold Spring Harbor Laboratory Press, Plainview, NY.

    Google Scholar 

  • Selker, E.U. 1999. Gene silencing: repeats that count. Cell 97: 157–160.

    Google Scholar 

  • Sijmons, P.C.M., Dekker, B.M.M., Schrammeijer, B., Verwoerd, T.C., van den Elzen, P.J.M. and Hoekema, A. 1990. Production of correctly processed human serum albumin in transgenic plants. Bio/technology 8: 217–221.

    Google Scholar 

  • Suntio, T.M. and Teeri, T.H. 1994. A new bifunctional reporter gene for in-vivo tagging of plant promoters. Plant Mol. Biol. Rep. 12: 43–57.

    Google Scholar 

  • Teeri, T.H., Herrera-Estrella, L., Depicker, A., Van Montagu, M. and Palva, E.T. 1986. Identification of plant promotors in situ by T-DNA-mediated transcriptional fusions to the nptII gene. EMBO J. 5: 1755–1760.

    Google Scholar 

  • Teeri, T.H., Lehväslaiho, H., Franck, M., Uotila, J., Heino, P., Palva, E.T., Van Montagu, M. and Herrera-Estrella, L. 1989. Gene fusions to lacZ reveal new expression patterns of chimeric genes in transgenic plants. EMBO J. 8: 343–350.

    Google Scholar 

  • Thompson, D. and Henry, R. 1995. Single-step protocol for preparation of plant tissue for analysis by PCR. Biotechniques 19: 394–400.

    Google Scholar 

  • Topping, J.F. and Lindsey, K. 1995. Insertional mutagenesis and promoter trapping in plants for the isolation of genes and the study of development. Transgenic Res. 4: 291–305.

    Google Scholar 

  • Topping, J.F. and Lindsey, K. 1997. Promoter trap markers differentiate structural and positional components of polar development in Arabidopsis. Plant Cell 9: 1713–1725.

    Google Scholar 

  • Topping, J.F., Wei, W.B. and Lindsey, K. 1991. Functional tagging of regulatory elements in the plant genome. Development 112: 1009–1019.

    Google Scholar 

  • van der Graaff, E. and Hooykaas, P.J.J. 1996. Improvements in the transformation of Arabidopsis thaliana C24 leaf discs by Agrobacterium tumefaciens. Plant Cell Rep. 15: 572–577.

    Google Scholar 

  • Vancanneyt, G., Schmidt, R., O'Connor-Sanchez, A., Willmitzer, L. and Rocha-Sosa, M. 1990. Construction of an intron-containing marker gene: splicing of the intron in transgenic plants and its use in monitoring early events in Agrobacterium-mediated transformation. Mol. Gen. Genet 220: 245–250.

    Google Scholar 

  • van der Kop, D.A.M., Schuyer, M., Pinas, J.E., van der Zaal, B.J. and Hooykaas, P.J.J. 1999. Selection of Arabidopsis mutants over-expressing genes driven by the promoter of an auxininducible glutathione S-transferase gene. Plant Mol. Biol. 39: 979–990.

    Google Scholar 

  • Vieira, J. and Messing, J. 1982. The pUC plasmids, an M13MP7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Google Scholar 

  • Voelker, T.A., Worrell, A.C., Anderson, L., Bleibaum, J., Fan, C., Hawkins, D.J., Radke, S.E. and Davies, H.M. 1992. Fatty acid biosynthesis redirected to medium chains in transgenic oilseed plants. Science 257: 72–73.

    Google Scholar 

  • Yanagisawa, S. and Sheen, J. 1998. Involvement of maize Dof zinc finger proteins in tissue-specific and light-regulated gene expression. Plant Cell 10: 75–89.

    Google Scholar 

  • Zaccomer, B., Cellier, F., Boyer, J.C., Haenni, A.L. and Tepfer, M. 1993. Transgenic plants that express genes including the 3' untranslated region of the turnip yellow mosaic virus (TYMV) genome are partially protected against TYMV infection. Gene 136: 87–94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacob Bade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bade, J., van Grinsven, E., Custers, J. et al. T-DNA tagging in Brassica napus as an efficient tool for the isolation of new promoters for selectable marker genes. Plant Mol Biol 52, 53–68 (2003). https://doi.org/10.1023/A:1023980326336

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023980326336

Navigation