Advertisement

Journal of Mammalian Evolution

, Volume 9, Issue 4, pp 271–280 | Cite as

Molecular Support for the Placement of Saiga and Procapra in Antilopinae (Artiodactyla, Bovidae)

  • Maria V. Kuznetsova
  • Marina V. Kholodova
Article

Abstract

The evolutionary history of the bovid subfamily Antilopinae is unclear. Traditionally, this subfamily is subdivided into two tribes: Neotragini (dwarf antelopes) and Antilopini (gazelles and their relatives). Here, we report new sequences for the 12S and 16S rRNA genes in the enigmatic antilopine taxa Procapra gutturosa and Saiga tatarica and analyze the phylogenetic relationships of these taxa relative to other antilopines. Our study demonstrates the close affinity of the saiga antelope to Gazella despite the conventional systematic allocation of Saiga to the Caprinae subfamily. The second member of the Saigini tribe, Pantholops hodgsoni (Tibetan gazelle), falls within Caprinae. In all of our analyses, Procapra gutturosa occupied a basal position in the Antilopinae clade or was a sister-group to the dwarf antelope Madoqua. This suggests early separation of Procapra from other antelopes.

Bovidae 12S rRNA 16S rRNA phylogeny Saiga Procapra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

LITERATURE CITED

  1. Allard, M. W., Miyamoto, M. M., Jarecki, L., Kraus, F., and Tennant, M. R. (1992). DNA systematics and evolution of the artiodactyls family Bovidae. Proc. Natl. Acad. Sci. USA 89: 3972–3976.Google Scholar
  2. Bannikov, A., L. Zhirnov, Lebedeva, L., and Fadeev, A. (1967). Biology of the Saiga, Israel Program for Scientific Translations, Jerusalem.Google Scholar
  3. Carroll, R. L. (1988). Vertebrate Paleontology and Evolution, W. H. Freeman and Company, New York.Google Scholar
  4. Farris, J. C. (1989). The retention index and homoplasy excess. Syst. Zool. 38: 406–407.Google Scholar
  5. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution 39: 788–791.Google Scholar
  6. Felsenstein, J. (1993). PHYLIP-Phylogeny Inference Package, Version 3.5, Seattle, University of Washington.Google Scholar
  7. Gatesy, J., Amato, G., Vrba, E.S., Schaller, G., and DeSalle, R. (1997). A cladistic analysis of mitochondrial ribosomal DNA from the Bovidae. Mol. Phylogenet. Evol. 7: 303–319.Google Scholar
  8. Gentry, A. W. (1992). The subfamilies and tribes of the family Bovidae. Mam. Rev. 22: 1–32.Google Scholar
  9. Groves, C. (1967). On the gazelles of the genus Procapra Hodgson, 1846. Z. Saugetierk. 32: 144–149.Google Scholar
  10. Groves, C. P. (2000). Phylogenetic relationships within recent Antilopini (Bovidae). In: Antelopes, Deer, and Relatives, S. Vrba and G. Shaller, eds., pp. 223–233, Yale University Press, New Haven and London.Google Scholar
  11. Groves, P., and Shields, G. F. (1996). Phylogenetics of the Caprinaae based on cytochrome b sequence. Mol. Phylogenet. Evol. 5: 467–475.Google Scholar
  12. Grubb, P. (1993). Order Artiodactyla. In: Mammal Species of the World. A Taxonomic and Geographic Reference, 2nd ed., D. E. Wilson and D. M. Reeder, eds., pp. 377–414, Smithsonian Institution Press, Washington, DC.Google Scholar
  13. Halthenorth, T. (1963). Klassifikation der Saugetiere: Artoidactyla. Handbuch Zool. 8: 1–167.Google Scholar
  14. Hassanin, A., and Douzery, E. J. P. (1999a). The tribal radiation of the family Bovidae (Artiodactyla) and the evolution of the mitochondrial cytochrome b gene. Mol. Phylogenet. Evol. 13: 227–243.Google Scholar
  15. Hassanin, A., and Douzery, E. J. P. (1999b). Evolutionary affinities of the enigmatic saola (Pseudoryx nghetinhensis) in the context of the molecular phylogeny of Bovidae. Proc. R. Soc. Lond. B 266: 893–900.Google Scholar
  16. Hauswirth, W. W., and Laipis, P. J. (1982). Mitochondrial DNA polymorphism in a maternal lineage of Holstein cows. Proc. Natl. Acad. Sci. USA 79: 4686–4690.Google Scholar
  17. Hiendleder, S. (1998). A low rate of replacement substitutions in two major Ovis aries mitochondrial genomes. Anim. Genet. 29: 116–122.Google Scholar
  18. Higgins, D. G., and Sharp, P. M. (1988). CLUSTAL: A package for performing multiple sequence alignment on a microcomputer. Gene 73: 237–244.Google Scholar
  19. Kraus, F., and Miyamoto, M. M. (1990). Rapid cladogenesis among the pecoran ruminants: Evidence from mitochondrial DNA sequences. Syst. Zool. 40: 117–130.Google Scholar
  20. Kluge, A. G., and Farris, J. C. (1969). Quantitative phyletics and the evolution of anurans. Syst. Zool. 18: 1–32.Google Scholar
  21. Kuznetsov, G. V., Kulikov, E. E., Petrov, N. B., Ivanova, N. V., Lomov, A. A., Kholodova, M. V., and Poltaraus, A. B. (2001). The “Linh Duong” Pseudonovibos spiralis (Mammalia, Artiodactyla) is a new buffalo. Naturwissenschaften 88: 123–125.Google Scholar
  22. Kuznetsova, M. V., Kholodova, M. V., and Luschekina A. A. (2002). Phylogenetic relationships of Bovidae: The new data. Russian Journal of Genetica 38: 1115–1124.Google Scholar
  23. Matthee, C. A., and Robinson, T. J. (1999). Cytochrome b phylogeny of the family Bovidae: resolution within the Alcelaphini, Antilopini, Neotragini, and Tragelaphini. Mol. Phylogenet. Evol. 12: 31–46.Google Scholar
  24. Matthee, C. A., and Davis, S. K. (2001). Molecular insights into evolution of the family Bovidae: A nuclear DNA perspective. Mol. Biol. Evol. 18: 1220–1230.Google Scholar
  25. Pavlinov, I. J., and Possolimo, O. L. (1998). Systematic of Mammals of Soviet Union, Archives of Zool. Muzeum, Moscow State Univ (Vol. XXXVIII), Moscow.Google Scholar
  26. Rebholz, W., and Harley, E. (1999). Phylogenetic relationships in the bovid subfamily Antilopinae based on mitochondrial DNA sequences. Mol. Phylogenet. Evol. 12: 87–94.Google Scholar
  27. Reza Shariflou, M., and Moran, C. (2000). Conservation within artiodactyls of an AATA interrupt in the IGF-I microsatellite for 19–35 million years. Mol. Biol. Evol. 17: 665–669.Google Scholar
  28. Rosenberg, M. S., and Kumar, S. (2001). Incomplete taxon sampling is not a problem for phylogenetic inference. Mol. Biol. Evol. 19: 10751–10756.Google Scholar
  29. Saitou, N. and Nei, M. (1987). The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406–425.Google Scholar
  30. Sambrook, J., Fritsch, E. F., and Maniatis, T. (1989). Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Lab. Press, Cold Spring Harbor, New York.Google Scholar
  31. Savage, D., and Russel, D. (1983). Mammalian Paleofaunas of the World, Addison-Wesley, London.Google Scholar
  32. Simpson, G. G. (1945). The principles of classification and a classification of mammals. Bull. Amer. Mus. Nat. Hist. 85: 1–350.Google Scholar
  33. Sokolov, I. I. (1953). Experience of the natural classification of bovids (Bovidae). Proc. of Zool. Muz. XIV, Moscow.Google Scholar
  34. Sokolov, V. E. (1979). Systematic of Mammals, Moscow Univ. Press, Moscow.Google Scholar
  35. Strimmer K., and von Haeseler, A. (1997). Likelyhood-mapping a simple method to visualize phylogenetic content of a sequence alignment. Proc. Nat. Acad. Sci. USA 94: 6815–6819.Google Scholar
  36. Swofford, D. L. (1998). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), Version 4, Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  37. Tamura K., and Nei, M. (1993). Estimation of the number of nucleotide substitution in the control region of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10: 512–526.Google Scholar
  38. Tikhonov, A. N. and Bischof, L. (1995). Phylogenetic relationships of the Antilopinae based on cranial morphology and mitochondrial DNA sequences. Abstr. 2d Europ. Congr. Mammal. Southhampton, p. 62.Google Scholar

Copyright information

© Plenum Publishing Corporation 2002

Authors and Affiliations

  1. 1.Dept. of Evolutionary Biochemistry, A. N. Belozersky InstituteMoscow State UniversityMoscowRussia
  2. 2.Severtsov Institute of Ecology and EvolutionMoscowRussia

Personalised recommendations