Skip to main content
Log in

Experimental and quantum-chemical study of complexation of carbene analogs with dinitrogen. Direct IR-spectroscopic observation of Cl2Si·N2 complexes in low-temperature argon-nitrogen matrices

  • Published:
Russian Chemical Bulletin Aims and scope

Abstract

Interaction of dichlorosilylene with dinitrogen in mixed Ar—N2 matrices at 9 - 10 K was studied by IR spectroscopy. A donor-acceptor complex Cl2Si·N2 was found and characterized by six bands of symmetric (at 511.2, 508.9, and 506.5 cm–1) and antisymmetric (at 500.1, 496.9, and 495.1 cm–1) stretching vibrations of Si—Cl bonds in the most abundant isotopomers. Two bands at 498.7 and 493.5 cm–1 observed in mixed matrices were tentatively assigned to Cl2Si·(N2)2 complex. Several stretching vibration bands of minor isotopomers of SiCl2 were detected for the first time in argon matrices. Assignment has been done for the isotopic structure of SiCl2 associates with dinitrogen observed in N2 matrices. Dimerization of SiCl2 and its complexation with one and two N2 molecules were studied by quantum-chemical DFT calculations (PBE and B3LYP functionals). The structures, energies, and vibrational frequencies of the Cl2Si·N2 and Cl2Si·(N2)2 complexes and the Si2Cl4 dimer were determined. The energies of SiCl2 complexation with one and two N2 molecules obtained from PBE and B3LYP calculations are 0.3 and 0.6 kcal mol–1, respectively. More accurate G2(MP2,SVP) calculations using the B3LYP geometries have predicted a higher stability of the Cl2Si·N2 complex (1.2 kcal mol–1). The calculated and experimental vibrational frequencies of reagents and complexes are in good agreement. A correlation has been established between the PBE calculated energies of complexation of EHal2 (E = Si, Ge, Sn, Pb) with N2 and the experimentally observed shifts of E—Hal stretching vibrations in EHal2 upon complexation. The strength of the complexes with N2 increases on going from dihalosilylenes to dihaloplumbylenes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. P. Gaspar and R. West, in The Chemistry of Organic Silicon Compounds, Eds. Z. Rappoport and Y. Apeloig, 1998, V. 2, 2463 and literature cited herein.

  2. G. R. Gillette, G. H. Noren, and R. West, Organometallics, 1989, 8, 487.

    Google Scholar 

  3. W. Ando, K. Hagiwara, and A. Sekiguchi, Organometallics, 1987, 6, 2270.

    Google Scholar 

  4. N. Takeda, H. Suzuki, N. Tokitoh, R. Okazaki, and S. Nagase, J. Am. Chem. Soc., 1997, 119, 1456.

    Google Scholar 

  5. M. Weidenbruch, B. Brandt-Roth, S. Pohl, and W. Saak, Angew. Chem., Int. Ed. Engl., 1990, 29, 90.

    Google Scholar 

  6. M. Weidenbruch, B. Brandt-Roth, S. Pohl, and W. Saak, Polyhedron, 1991, 10, 1147.

    Google Scholar 

  7. M. B. Taraban, V. F. Plyusnin, O. S. Volkova, V. P. Grivin, T. V. Leshina, V. Ya. Lee, V. I. Faustov, M. P. Egorov, and O. M. Nefedov, J. Phys. Chem., 1995, 99, 14719.

    Google Scholar 

  8. R. Becerra and R. Walsh, in Research in Chemical Kinetics, Eds. R. G. Compton and G. Hancock, Elsevier, 1995, V. 3, 263.

  9. S. Sakai, Int. J. Quantum Chem., 1998, 70, 291.

    Google Scholar 

  10. M.-A. Pearsall and R. West, J. Am. Chem. Soc., 1988, 110, 7228.

    Google Scholar 

  11. C. A. Arrington, J. T. Petty, S. E. Payne, and W. C. K. Haskins, J. Am. Chem. Soc., 1988, 110, 6240.

    Google Scholar 

  12. S. E. Boganov, V. I. Faustov, M. P. Egorov, and O. M. Nefedov, Izv. Akad. Nauk, Ser. Khim., 1998, 1087 [Russ. Chem. Bull., 1998, 47, (Engl. Transl.)].

  13. D. Tevault and K. Nakamoto, Inorg. Chem., 1976, 15, 1282.

    Google Scholar 

  14. V. A. Svyatkin, A. K. Mal´tsev, and O. M. Nefedov, Izv. Akad. Nauk SSSR, Ser. Khim., 1977, 2236 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1977, 26, (Engl. Transl.)].

  15. A. D. Becke, J. Chem. Phys., 1993, 98, 5648.

    Google Scholar 

  16. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.

    Google Scholar 

  17. L. A. Curtiss, P. C. Redfern, B. J. Smith, and L. Radom, J. Chem. Phys., 1996, 104, 5148.

    Google Scholar 

  18. L. A. Curtiss, K. Raghavachari, G. W. Trucks, and J. A. Pople, J. Chem. Phys., 1991, 94, 7221.

    Google Scholar 

  19. GAUSSIAN-94, Revision D. 1, Gaussian, Inc., Pittsburgh (PA), 1995.

  20. D. N. Laikov, Ph. D. (Phys.-Math.) Thesis, Moscow State Univ., Moscow, 2000 (in Russian).

    Google Scholar 

  21. D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.

    Google Scholar 

  22. A. Patyk, W. Sander, J. Gauss, and D. Cremer, Chem. Ber., 1990, 123, 89.

    Google Scholar 

  23. A. M. Mosin and Yu. Kh. Shaulov, Zh. Fiz. Khim., 1972, 46, 1834 [Russ. J. Phys. Chem., 1972, 46 (Engl. Transl.)].

    Google Scholar 

  24. M. T. Swihart and R. W. Carr, J. Phys. Chem., A, 1997, 101, 7434.

    Google Scholar 

  25. V. G. Bykovchenko, V. I. Pchelintsev, N. G. Komalenkova, S. A. Bashkirova, and E. A. Chernyshev, Kinetika i Kataliz, 1975, 16, 813 [Kinet. Catal., 1975, 16 (Engl. Transl.)].

    Google Scholar 

  26. V. F. Kochubei, A. P. Gavrilov, F. B. Moin, and Yu. A. Pazderskii, Kinetika i Kataliz, 1978, 19, 1084 [Kinet. Catal., 1978, 19 (Engl. Transl.)].

    Google Scholar 

  27. A. M. Doncaster and R. Walsh, J. Chem. Soc., Faraday Trans. 1, 1980, 76, 272.

    Google Scholar 

  28. F. Stitt and D. M. Yost, J. Chem. Phys., 1937, 5, 90.

    Google Scholar 

  29. M. Katayama, T. Shimanouchi, Y. Morino, and S. Mizushima, J. Chem. Phys., 1950, 18, 506.

    Google Scholar 

  30. Y. Morino, J. Chem. Phys., 1956, 24, 164.

    Google Scholar 

  31. H. Burger and H. Falius, Z. Anorg. Allg. Chem., 1968, 363, 24.

    Google Scholar 

  32. J. E. Griffiths, Spectrochim. Acta., A, 1969, 25, 965.

    Google Scholar 

  33. G. A. Ozin, J. Chem. Soc., A, 1969, 2952.

  34. F. Hofler, W. Sawodny, and E. Hengge, Spectrochim. Acta., Part A, 1970, 26, 819.

    Google Scholar 

  35. V. S. Dernova, I. F. Kovalev, M. G. Voronkov, and R. G. Mirskov, Izv. AN SSSR, Ser. khim., 1974, 593 [Bull. Acad. Sci. USSR, Div. Chem. Sci., 1974, 23, (Engl. Transl.)].

  36. R. L. Redington and D. E. Milligan, J. Chem. Phys., 1962, 37, 2162.

    Google Scholar 

  37. R. L. Redington and D. E. Milligan, J. Chem. Phys., 1963, 39, 1276.

    Google Scholar 

  38. A. Schriver, L. Schriver-Mazzuoli, and A. A. Vigasin, Vibrational Spectr., 2000, 23, 83.

    Google Scholar 

  39. D. Millard, A. Schriver, J. P. Perchard, and C. Girardet, J. Chem. Phys., 1979, 71, 505.

    Google Scholar 

  40. S. T. King, J. Chem. Phys., 1968, 49, 1321.

    Google Scholar 

  41. F. Koniger, A. Muller, and W. J. Orville-Thomas, J. Mol. Struct., 1977, 37, 199.

    Google Scholar 

  42. M. E. Jacox and D. E. Milligan, J. Chem. Phys., 1968, 49, 3130.

    Google Scholar 

  43. S. Coussan, A. Loutellier, J. P. Perchard, S. Racine, and Y. Bouteiller, J. Mol. Struct., 1998, 471, 37.

    Google Scholar 

  44. D. E. Mann, N. Acquista, and D. White, J. Chem. Phys., 1966, 44, 3453.

    Google Scholar 

  45. G. Maass, R. H. Hauge, and J. L. Margrave, Z. Anorg. Allg. Chem., 1972, 392, 295.

    Google Scholar 

  46. M. Tacke, Ch. Klein, D. J. Stufkens, A. Oskam, P. Jutzi, and E. A. Bunte, Z. Anorg. Allg. Chem., 1993, 619, 865.

    Google Scholar 

  47. B. S. Ault, Inorg. Chem., 1981, 20, 2817.

    Google Scholar 

  48. T. J. Lorenz and B. S. Ault, Inorg. Chem., 1982, 21, 1758.

    Google Scholar 

  49. K. P. Huber and G. Herzberg, Constants of Diatomic Molecules, Van Nostrand Reinhold, New York, 1979.

    Google Scholar 

  50. M. Fujitake and E. Hirota, Spectrochim. Acta, A, 1994, 50, 1345.

    Google Scholar 

  51. M. J. Tsuchiya, H. Honjou, K. Tanaka, and T. Tanaka, J. Mol. Struct., 1995, 352-353, 407.

    Google Scholar 

  52. K. V. Ermakov, B. S. Butayev, and V. P. Spiridonov, J. Mol. Struct., 1991, 248, 143.

    Google Scholar 

  53. M. T. Swihart and R. W. Carr, J. Phys. Chem., A, 1998, 102, 785.

    Google Scholar 

  54. A. K. Mal´tsev, V. A. Svyatkin, and O. M. Nefedov, Dokl. AN SSSR, 1976, 227, 1151 [Dokl. Chem., (Engl. Transl.)].

    Google Scholar 

  55. J. Karolczak, Q. Zhuo, D. J. Clouthier, W. M. Davis, and J. D. Goddard, J. Chem. Phys., 1993, 98, 60.

    Google Scholar 

  56. J. Bouix, R. Hillel, and A. Michaelides, J. Raman Spectr., 1978, 7, 346.

    Google Scholar 

  57. I. R. Beattie and R. O. Perry, J. Chem. Soc., A, 1970, 2429.

  58. G. A. Ozin and A. V. Voet, J. Chem. Phys., 1972, 56, 4768.

    Google Scholar 

  59. L. Andrews and D. L. Frederick, J. Am. Chem. Soc., 1970, 92, 775.

    Google Scholar 

  60. D. Naegeli and H. B. Palmer, J. Mol. Spectrosc., 1966, 21, 325.

    Google Scholar 

  61. R. O. Perry, J. Chem. Soc., Chem. Commun., 1969, 886.

  62. M. Fields, R. Devonshire, H. G. M. Edwards, and V. Fawcett, Spectrochim. Acta, A, 1995, 51, 2249.

    Google Scholar 

  63. W. W. Scholler and R. Schneider, Chem. Ber. Recl., 1997, 130, 1013.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lalov, A.V., Boganov, S.E., Faustov, V.I. et al. Experimental and quantum-chemical study of complexation of carbene analogs with dinitrogen. Direct IR-spectroscopic observation of Cl2Si·N2 complexes in low-temperature argon-nitrogen matrices. Russian Chemical Bulletin 52, 526–538 (2003). https://doi.org/10.1023/A:1023973815486

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023973815486

Navigation