Skip to main content
Log in

Coriolis force and Sagnac effect

  • Published:
Foundations of Physics Letters

Abstract

The optical Sagnac effect is considered, when the fictitious gravitational field simulates the reflections from the mirrors. It is shown that no contradiction exists between the conclusions of the laboratory and rotated observers. Because of the acting of a gravity-like Coriolis force, the trajectories of coand anti-rotating photons have different radii in the rotating reference frame, while in the case of equal radii the effective gravitational potentials for the photons have to be different.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Sagnac,C. R. Acad. Sci. 157, 708, 1410 (1913).

    Google Scholar 

  2. G. E. Stedman, “Ring-Laser tests of fundamental physics and geophysics,”Rep. Prog. Phys. 60, 615–688 (1997).

    Article  ADS  Google Scholar 

  3. D. W. Allan and M. A. Weiss, “Around-the-world relativistic Sagnac experiment,”Science 228, 69–70 (1985).

    Article  ADS  Google Scholar 

  4. F. Selleri, “Noninvariant one-way speed of light and locally equivalent reference frames,”Found. Phys. Lett. 10, 73–83 (1997).

    Article  MathSciNet  Google Scholar 

  5. G. Rizzi and A. Tartaglia, “Speed of light on rotating platforms,”Found. Phys. 28, 1663–1683 (1998).

    Article  MathSciNet  Google Scholar 

  6. A. Brillet and J. L. Hall, “Improved laser test of the isotropy of space,”Phys. Rev. Lett. 42, 549–552 (1979).

    Article  ADS  Google Scholar 

  7. H. Aspden, “Laser interferometry experiments on light-speed anisotropy,”Phys. Lett. A 85, 411–414 (1981).

    Article  ADS  Google Scholar 

  8. R. D. Klauber, “New perspectives on the relativistically rotating disk and non-time-orthogonal reference frames,”Found. Phys. Lett. 11, 405–443 (1998).

    Article  MathSciNet  Google Scholar 

  9. E. J. Post, “Sagnac Effect,”Rev. Mod. Phys. 39, 475–493 (1967).

    Article  ADS  Google Scholar 

  10. J. Anandan, “Sagnac effect in relativistic and nonrelativistic physics,”Phys. Rev. D 24, 338–346 (1981).

    Article  ADS  Google Scholar 

  11. M. Dresden and C. N. Yang, “Phase shift in a rotating neutron or optical interferometer,”Phys. Rev. D 20, 1846–1848 (1979).

    Article  ADS  Google Scholar 

  12. J. J. Sakurai, “Comments on quantum-mechanical interference due to the Earth’s rotation,”Phys. Rev. D 21, 2993–2994 (1980).

    Article  ADS  Google Scholar 

  13. M. G. Trocheris, “Electrodynamics in a rotating frame of reference,”Phil. Mag. 40, 1143–1154 (1949). H. Takeno, “On relativistic theory of rotating disk,”Prog. Theor. Phys. 7, 367–376 (1952). L. Herrera, “The relativistic transformation to rotating frames,”Nuovo Cim. B 115, 307–318 (2000). V. Bashkov and M. Malakhaltsev, “Geometry of rotating disk and the Sagnac effect,” gr-qc/0011061.

    Article  MathSciNet  MATH  Google Scholar 

  14. H. Nikolic, “Relativistic contraction and related effects in noninertial frames,”Phys. Rev. A 61, 032109 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  15. A. Tartaglia, “General relativistic corrections to the Sagnac effect,”Phys. Rev. D58, 064009 (1998). A. Peres, “Synchronization of clocks in a rotating frame,”Phys. Rev. D 18, 2173-2174 (1978). V. Petkov, “Anisotropic velocity of light in non-inertial reference frames,” gr-qc/9909081.

    ADS  Google Scholar 

  16. L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields (Pergamon, Reading, MA, 1962).

    MATH  Google Scholar 

  17. S. Kichenassamy and P. Krikorian, “Note on Maxwell’s equations in relativistically rotating frames,”J. Math. Phys. 35, 5726–5733 (1994).

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. R. V. Pound and J. L. Snider, “Effect of gravity on gamma radiation,”Phys. Rev. B 140, 788–803 (1965).

    Article  ADS  Google Scholar 

  19. R. Feynman,Lectures on Gravitation (Addison-Wesley, Reading, MA, 1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gogberashvili, M. Coriolis force and Sagnac effect. Found Phys Lett 15, 487–493 (2002). https://doi.org/10.1023/A:1023972214666

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023972214666

Key words

Navigation