Coriolis force and Sagnac effect

Abstract

The optical Sagnac effect is considered, when the fictitious gravitational field simulates the reflections from the mirrors. It is shown that no contradiction exists between the conclusions of the laboratory and rotated observers. Because of the acting of a gravity-like Coriolis force, the trajectories of coand anti-rotating photons have different radii in the rotating reference frame, while in the case of equal radii the effective gravitational potentials for the photons have to be different.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    G. Sagnac,C. R. Acad. Sci. 157, 708, 1410 (1913).

    Google Scholar 

  2. 2.

    G. E. Stedman, “Ring-Laser tests of fundamental physics and geophysics,”Rep. Prog. Phys. 60, 615–688 (1997).

    ADS  Article  Google Scholar 

  3. 3.

    D. W. Allan and M. A. Weiss, “Around-the-world relativistic Sagnac experiment,”Science 228, 69–70 (1985).

    ADS  Article  Google Scholar 

  4. 4.

    F. Selleri, “Noninvariant one-way speed of light and locally equivalent reference frames,”Found. Phys. Lett. 10, 73–83 (1997).

    MathSciNet  Article  Google Scholar 

  5. 5.

    G. Rizzi and A. Tartaglia, “Speed of light on rotating platforms,”Found. Phys. 28, 1663–1683 (1998).

    MathSciNet  Article  Google Scholar 

  6. 6.

    A. Brillet and J. L. Hall, “Improved laser test of the isotropy of space,”Phys. Rev. Lett. 42, 549–552 (1979).

    ADS  Article  Google Scholar 

  7. 7.

    H. Aspden, “Laser interferometry experiments on light-speed anisotropy,”Phys. Lett. A 85, 411–414 (1981).

    ADS  Article  Google Scholar 

  8. 8.

    R. D. Klauber, “New perspectives on the relativistically rotating disk and non-time-orthogonal reference frames,”Found. Phys. Lett. 11, 405–443 (1998).

    MathSciNet  Article  Google Scholar 

  9. 9.

    E. J. Post, “Sagnac Effect,”Rev. Mod. Phys. 39, 475–493 (1967).

    ADS  Article  Google Scholar 

  10. 10.

    J. Anandan, “Sagnac effect in relativistic and nonrelativistic physics,”Phys. Rev. D 24, 338–346 (1981).

    ADS  Article  Google Scholar 

  11. 11.

    M. Dresden and C. N. Yang, “Phase shift in a rotating neutron or optical interferometer,”Phys. Rev. D 20, 1846–1848 (1979).

    ADS  Article  Google Scholar 

  12. 12.

    J. J. Sakurai, “Comments on quantum-mechanical interference due to the Earth’s rotation,”Phys. Rev. D 21, 2993–2994 (1980).

    ADS  Article  Google Scholar 

  13. 13.

    M. G. Trocheris, “Electrodynamics in a rotating frame of reference,”Phil. Mag. 40, 1143–1154 (1949). H. Takeno, “On relativistic theory of rotating disk,”Prog. Theor. Phys. 7, 367–376 (1952). L. Herrera, “The relativistic transformation to rotating frames,”Nuovo Cim. B 115, 307–318 (2000). V. Bashkov and M. Malakhaltsev, “Geometry of rotating disk and the Sagnac effect,” gr-qc/0011061.

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    H. Nikolic, “Relativistic contraction and related effects in noninertial frames,”Phys. Rev. A 61, 032109 (2000).

    ADS  MathSciNet  Article  Google Scholar 

  15. 15.

    A. Tartaglia, “General relativistic corrections to the Sagnac effect,”Phys. Rev. D58, 064009 (1998). A. Peres, “Synchronization of clocks in a rotating frame,”Phys. Rev. D 18, 2173-2174 (1978). V. Petkov, “Anisotropic velocity of light in non-inertial reference frames,” gr-qc/9909081.

    ADS  Google Scholar 

  16. 16.

    L. D. Landau and E. M. Lifshitz,The Classical Theory of Fields (Pergamon, Reading, MA, 1962).

    MATH  Google Scholar 

  17. 17.

    S. Kichenassamy and P. Krikorian, “Note on Maxwell’s equations in relativistically rotating frames,”J. Math. Phys. 35, 5726–5733 (1994).

    ADS  MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    R. V. Pound and J. L. Snider, “Effect of gravity on gamma radiation,”Phys. Rev. B 140, 788–803 (1965).

    ADS  Article  Google Scholar 

  19. 19.

    R. Feynman,Lectures on Gravitation (Addison-Wesley, Reading, MA, 1995).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gogberashvili, M. Coriolis force and Sagnac effect. Found Phys Lett 15, 487–493 (2002). https://doi.org/10.1023/A:1023972214666

Download citation

Key words

  • Sagnac effect
  • rotating disk