Skip to main content
Log in

Transformation of hydrogen trapped onto microbubbles into H platelet layer in SI

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Features of a process of delamination of a crystalline silicon layer from a silicon wafer along a hydrogen platelet layer formed by r.f. plasma hydrogenation are described. The process involves first making a buried layer of nuclei for hydrogen platelets. Ion implantation of inert or low-soluble gases is used to form the layer. The nuclei are microbubbles that appear along the Rp plane of implanted ions. Results for argon are presented. Wafers implanted with a dose of 1015 cm−2 are then hydrogenated with an r.f. plasma. During hydrogenation, atomic hydrogen diffuses into the silicon wafer and collects onto internal surfaces of the microbubbles. Then the hydrogen increases the internal surface of the microbubbles by growing platelet-type extensions to the microbubbles. The extensions grow preferentially along the buried-layer plane. A silicon layer above the layer of grown platelets was delaminated through a pre-bonding/cut/post-bonding sequence as in a standard layer-transfer process. The plasma hydrogenation of the trap layer may be used as a step in a process of fabricating of SOI wafers with a very thin top crystalline silicon layer. Also, implant doses needed to form the microbubble trap layer are much lower than doses of direct implantation of hydrogen in the layer-transfer process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Aspar, H. Moriceau, E. Jalaguier, C. Lagahe, A. Soubie, B. Biasse, A. M. Papon, A. Claverie, J. Grisolia and G. Benassayag, J. Electron. Mater. 30 (2001) 834.

    Google Scholar 

  2. K. Henttinen, I. Suni and S. S. Lau, Appl. Phys. Lett. 76, (2000) 2370.

    Google Scholar 

  3. Y. Zheng, S. S. Lau, T. HÖchbauer, A. Misra, R. Verda, X.-M. He, M. Nastasi and J. W. Mayer, J. Appl. Phys. 89 (2001) 2972.

    Google Scholar 

  4. K. Henttinen, T. Suni, A. Nurmela, I. Suni, S. S. Lau, T. HÖchbauer, M. Nastasi and V.-M. Airaksinen, Nucl. Instrum. Methods Phys. Res. B 190 (2002) 761.

    Google Scholar 

  5. A. Y. Usenko, W. N. Carr, B. Chen and Y. Chabal, IEEE/SEMI Advanced Semiconductor Manufacturing Conference Proceedings (2002) p. 6.

  6. A. Agarwal, T. E. Haynes, V. C. Venezia and O. W. Holland, Appl. Phys. Lett. 72 (1998) 1086.

    Google Scholar 

  7. C. Qian, B. Terreault and S. C. Gujrathi, Nucl. Instrum. Methods Phys. Res. B 175–177 (2001) 711.

    Google Scholar 

  8. Q.-Y. Tong, R. Scholz, U. GÖsele, T.-H. Lee, L.-J. Huang, Y.-L. Chao and T. Y. Tan, App. Phys. Lett. 72 (1998) 49.

    Google Scholar 

  9. A. Y. Usenko and W. N. Carr, in “Silicon-on-Insulator Technology and Devices X”, edited by S. Cristoloveanu, P. L. F. Hemment, K. Izumi, G. K. Celler, F. Assaderaghi and Y.-W. Kim, PV 2001–3 (The Electrochemical Society, Pennington, NJ, 2001) p. 33.

    Google Scholar 

  10. A. Y. Usenko and W. N. Carr, Mater. Res. Soci. Symp. Proc. 681E (2001) I3.3.1.

    Google Scholar 

  11. A. Y. Usenko and W. N. Carr, Proceedings of 2000 IEEE SOI Conference, Wakefield, MA, Oct. 2000 (2000) p. 16.

  12. A. Y. Usenko, US Patent 6 368 938, April (2002).

  13. A. Y. Usenko, US Patent 6 352 909, March (2002).

  14. A. Y. Usenko and W. N. Carr US Patent 6 346459, February (2002).

  15. A. Y. Usenko US Patent 6 344 417, February (2002).

  16. The International Technology Roadmap for Semiconductor, 2001, Front End Processes, (2001) p. 7.

  17. General specification for customized UNIBOND® Wafers, SOITEC, 2002.

  18. C. Qian and B. Terreault, J. Appl. Phys. 90 (2001) 5152.

    Google Scholar 

  19. C. Qian and B. Terreault, Mater. Res. Soc. Symp. Proc. 585 (2000) 177.

    Google Scholar 

  20. C. Maleville, E. Neyret, L. Ecarnot, E. Arene, T. Barge and A. J. Auberton, IEEE International SOI Conference (2001) p. 155.

  21. K. V. Srikrishnan, US Patent 5 882 987, March (1999).

  22. V. P. Popov, I. V. Antonova, V. F. Stas, L. V. Mironova, A. K. Gutakovskii, E. V. Spesivtsev, A. S. Mardegzhov, A. A. Franznusov and G. N. Feofanov, Mater. Sci. Eng. B 73 (2000) 82.

    Google Scholar 

  23. M. K. Weldon, V. E. Marsico, Y. J. Chabal, A. Agarwal, D. J. Eaglesham, J. Sapjeta, W. L. Brown, D. C. Jacobson, Y. Caudano, S. B. Christman and E. E. Chaban, J. Vac. Sci. Technol. B 15 (1997) 1065.

    Google Scholar 

  24. N. H. Nickel, G. B. Anderson, N. M. Johnson and J. Walker, Phys. Rev. B 62 (2000) 8012.

    Google Scholar 

  25. N. M. Johnson, F. A. Ponce, R. A. Street and R. J. Nemanich, Phys. Rev. B 35 (1987) 4166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Usenko, A.Y., Carr, W.N. & Chen, B. Transformation of hydrogen trapped onto microbubbles into H platelet layer in SI. Journal of Materials Science: Materials in Electronics 14, 305–309 (2003). https://doi.org/10.1023/A:1023967726942

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023967726942

Keywords

Navigation