Skip to main content
Log in

On the Interior Transmission Problem in Nondissipative, Inhomogeneous, Anisotropic Elasticity

  • Published:
Journal of elasticity and the physical science of solids Aims and scope Submit manuscript

Abstract

In this paper, the interior transmission problem for the non absorbing, anisotropic and inhomogeneous elasticity is investigated. The direct scattering problem for the penetrable inhomogeneous, anisotropic and nondissipative scatterer is first studied and the existence and uniqueness of its solution are established. In the sequel, the interior transmission problem in its classical and weak form is presented and suitable variational formulations of it are settled. Finally, it is proved that the interior transmission eigenvalues constitute a discrete set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Colton and A. Kirsch, A simple method for solving the inverse scattering problems in the resonance region. Inverse Problems 12 (1996) 383–393.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  2. D. Colton, M. Piana and R. Potthast, A simple method using Morozov's discrepancy principle for solving scattering problems. Inverse Problems 13 (1999) 1477–1493.

    Article  MathSciNet  ADS  Google Scholar 

  3. D. Colton, J. Coyle and P. Monk, Recent developments in inverse acoustic scattering theory. SIAM Rev. 42(3) (2000) 369–414.

    Article  MATH  MathSciNet  Google Scholar 

  4. B.P. Rynne and B.D. Sleeman, The interior transmission problem and inverse scattering from inhomogeneous medium. SIAM J. Math. Anal. 22(6) (1991) 1755–1762.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  5. A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for the transmission problem in three-dimensional linear elasticity. Inverse Problems 18 (2002) 547–558.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  6. D. Colton, R. Kress and P. Monk, Inverse scattering from an orthotropic medium. J. Comput. Appl. Math. 81 (1997) 269–298.

    Article  MATH  MathSciNet  Google Scholar 

  7. D. Colton and R. Potthast, The inverse electromagnetic scattering problem for an anisotropic medium. Quart. J. Mech. Appl. Math. 52 (1999) 349–372.

    Article  MATH  MathSciNet  Google Scholar 

  8. J. Coyle, An inverse electromagnetic scattering problem in a two-layer background. Inverse Problems 16 (2000) 275–292.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. P. Hahner, On the uniqueness of the shape of a penetrable, anisotropic obstacle. J. Comput. Appl. Math. 116 (2000) 167–180.

    Article  MathSciNet  ADS  Google Scholar 

  10. M. Piana, On the uniqueness for anisotropic inhomogeneous inverse scattering problems. Inverse Problems 14 (1998) 1565–1579.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  11. F. Cakoni, D. Colton and H. Haddar, The linear sampling method for anisotropic media. J. Comput. Appl. Math. (2002), to appear.

  12. F. Cakoni and H. Haddar, The linear sampling method for anisotropic media: Part II. Preprints 2001/26, MSRI Berkeley, California.

    Google Scholar 

  13. A. Charalambopoulos, D. Gintides and K. Kiriaki, The linear sampling method for nonabsorbing penetrable elastic bodies (2002) submitted for publication.

  14. R. Leis, Initial Boundary Value Problems in Mathematical Sciences. Wiley, New York (1986).

    Google Scholar 

  15. G. Dassios, K. Kiriaki and D. Polyzos, Scattering theorems for complete dyadic fields. Internat. J. Engrg. Sci. 33 (1995) 269–277.

    Article  MATH  MathSciNet  Google Scholar 

  16. V.D. Kupradze, Three-Dimensional Problems of the Mathematical Theory of Elasticity and Thermoelasticity. North-Holland, Amsterdam (1979).

    Google Scholar 

  17. V. Isakov, Inverse problems for partial differential equations. In: Applied Mathematical Sciences, Vol. 127. Springer, New York (1997).

    Google Scholar 

  18. D. Gilbarg and N.S. Trundinger, Elliptic Partial Differential Equations of Second Order. Springer, Berlin (1977).

    Google Scholar 

  19. D. Gintides and K. Kiriaki, The far field equations in linear elasticity - An inversion scheme. Z. Angew. Math. Mech. 81 (2001) 305–316.

    Article  MATH  MathSciNet  Google Scholar 

  20. D. Colton and R. Kress, Inverse acoustic and electromagnetic scattering theory. Applied Mathematical Sciences, Vol. 93. Springer, New York (1992).

    Google Scholar 

  21. G. Dassios and Z. Rigou, Elastic Herglotz functions, SIAM J. Appl. Math. 55(5) (1995) 1345–1361.

    Article  MATH  MathSciNet  Google Scholar 

  22. C.J.S. Alves and R. Kress, On the far field operator in elastic obstacle scattering. IMA J. Appl. Math. 67 (2002) 1–21.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  23. W. Rudin, Functional Analysis. McGraw-Hill, New York (1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charalambopoulos, A. On the Interior Transmission Problem in Nondissipative, Inhomogeneous, Anisotropic Elasticity. Journal of Elasticity 67, 149–170 (2002). https://doi.org/10.1023/A:1023958030304

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023958030304

Navigation