Skip to main content
Log in

On the Zinc and Copper Dissolution in Phosphate Solutions

  • Published:
Protection of Metals Aims and scope Submit manuscript

Abstract

The copper and zinc dissolution in phosphate solutions is studied over wide pH range (from 4.5 to 11.7). The cathodic reaction rates are shown to depend on the pH of the solutions; they are minimum at a pH of 9.5 for zinc and 11.7 for copper. Phosphate directly participates in the cathodic process on zinc because of the reduction of phosphate to phosphite anions. Thermodynamic calculations, corroborated by electrochemical studies and analyses of the electrode surfaces by different methods, showed that zinc passivates itself by the deposition of either ZnO, Zn(OH)2, Zn(H2PO4)2, and ZnHPO4, in the solutions of low acidity, or ZnO, Zn(OH)2, ZnHPO4, and Zn3(PO4)2 at a pH of 9.5 to 11.7. On copper, the passive films are formed of CuH2PO4 and CuHPO4 in weakly acid phosphate solutions or of CuO, Cu(OH)2, CuHPO4, and Cu3(PO4)2 at a pH of 9.5 to 11.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Kuznetsov, Yu.I., Rozenfel'd, I.L., and Podgornova, L.P., Zashch. Met., 1978, vol. 14, no. 5, p. 561.

    Google Scholar 

  2. Kuznetsov, Yu.I., Rozenfel'd, I.L., Podgornova, L.P., and Balashova, N.N., Elektrokhimiya, 1978, vol. 14, no. 12, p. 1869.

    Google Scholar 

  3. Kuznetsov, Yu.I. and Podgornova, L.P., Zashch. Met., 1983, vol. 19, no. 1, p. 98.

    Google Scholar 

  4. Kreshkov, A.P., Osnovy analiticheskoi khimii (Fundamentals of Analytical Chemistry), Moscow: Khimiya, 1970, vol. 1, p. 472.

    Google Scholar 

  5. Analiticheskaya khimiya elementov. Fosfor (Analytical Chemistry of Elements: Phosphorus), Moscow: Nauka, 1974, p. 218.

  6. Latimer, W.M., The Oxidation States of Elements and Their Potentials in Aqueous Solutions, New York, 1952.

  7. Maslikova, M.A. and Chemodanov, D.I., Izv. Akad. Nauk SSSR, Neorg. Mater., 1971, vol. 7, no. 10, p. 1773.

    Google Scholar 

  8. Varenko, E.S. and Galushko, V.P., Zashch. Met., 1973, vol. 9, no. 1, p. 103; no. 4, p. 460.

    Google Scholar 

  9. Vvedenskii, A.V. and Marshakov, I.K., Zashch. Met., 1983, vol. 19, no. 1, p. 79; no. 2, p. 282.

    Google Scholar 

  10. Kiss, L. and Varsanyi, L.M., Acta Chim. Acad. Sci. Hung., 1974, vol. 81, no. 1, p. 61.

    Google Scholar 

  11. Kuz'menko, A.L., Spravochnik po obshchei i neorganicheskoi khimii (Handbook of General and Inorganic Chemistry), Minsk: Vysshaya Shkola, 1974, p. 144.

    Google Scholar 

  12. Lur'e, Yu.Yu., Spravochnik po analiticheskoi khimii (Handbook of Analytical Chemistry), Moscow: Khimiya, 1979, p. 95.

    Google Scholar 

  13. Podgornova, L.P., Gorodetskii, A.E., Kuznetsov, Yu.I., and Kolesnichenko, A.A., Zashch. Met., 1980, vol. 16, no. 4, p. 500.

    Google Scholar 

  14. Dobos, D., Electrochemical Data, Budapest: Akad. Kiado, 1978, p. 365.

    Google Scholar 

  15. Wagner, C.D., Riggs, W.M., Davis, L.E., et al., Handbook of X-ray Photoelectron Spectroscopy, New York: Perkin-Elmer, 1979, p. 251.

    Google Scholar 

  16. Pourbaix, M., Atlas d'equilibres electrochimique a 25ºC, Paris: Gauthier-Vilars, 1963, p. 644.

    Google Scholar 

  17. Mikhailovskii, Yu.N. and Popova, V.M., Zashch. Met., 1984, vol. 20, no. 2, p. 204.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podgornova, L.P., Kuznetsov, Y.I. & Gavrilova, S.V. On the Zinc and Copper Dissolution in Phosphate Solutions. Protection of Metals 39, 217–221 (2003). https://doi.org/10.1023/A:1023954817961

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023954817961

Keywords

Navigation