Skip to main content
Log in

Exact Analytical Solutions of Static Electroelastic and Thermoelectroelastic Problems for a Transversely Isotropic Body in Curvilinear Coordinate Systems

  • Published:
International Applied Mechanics Aims and scope

Abstract

An approach to the solution of three-dimensional static problems for a transversely isotropic (rectilinear anisotropy) body is expounded and the solutions for piezoceramic canonical bodies are systematized. The result of the study is explicit analytical solutions of three-dimensional problems. Bodies are examined whose boundary surface is the coordinate surfaces in coordinate systems that permit the separation of the variables in the three-dimensional Laplace equation. The stress concentration in bodies near necks, cavities, inclusions, and cracks is investigated. The stress intensity factors of the force field and electric induction near elliptic and parabolic cracks are determined. The contact interaction of a piezoceramic half-space with elliptic and parabolic dies is studied. The bodies are under various mechanical, thermal, and electric loads

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Bezhanyan, “Plane adhesive-contact problem of electroelasticity for a half-plane,” in: Partial Differential Equations in Applied Problems [in Russian] (1986), pp. 17-21.

  2. V. A. Bezhanyan and A. F. Ulitko, “Vector boundary-value problems of electroelasticity for piezoceramic cylinders,” Izv. AN Arm. SSR, Ser. Mekh., No. 6, 16-20 (1984).

    Google Scholar 

  3. V. A. Bezhanyan and A. F. Ulitko, “Adhesive-contact electroelastic problem for a half-space,” Dop. AN URSR, Ser. A, Fiz.-Mat. Tekhn. Nauky, No. 6, 16-19 (1986).

    Google Scholar 

  4. V. A. Bezhanyan and A. F. Ulitko, “Adhesive-contact problem for a piezoceramic half-space covered with an electrode under a die,” Dop. AN URSR, Ser. A, Fiz-Mat. Tekhn. Nauky, No. 6, 35-39 (1990).

    Google Scholar 

  5. L. V. Belokopytova, O. A. Ivanenko, and L.A. Fil'shtinskii, “Coupled electric and mechanical fields in piezoelastic bodies with cuts or inclusions,” Dinam. Prochn. Mashin, No. 34, 16-21 (1981).

    Google Scholar 

  6. L. V. Belokopytova and L. A. Fil'shtinskii, “Two-dimensional boundary-value problem of electroelasticity for piezoceramic medium with cuts,” Prikl. Mat. Mekh., 43, No. 1, 138-143 (1979).

    Google Scholar 

  7. D. Berlinkur, D. Kerran, and G. Jaffe, “Piezoceramic electric and piezomagnetic materials and their application in transducers,” in: W. P. Mason (ed.), Physical Acoustics, Principles and Methods, Vol. 1, Part A, Methods and Devices, Academic Press, New York-London (1964).

    Google Scholar 

  8. V. A. Boriseiko, “Coupled electroelastic vibrations of a thick-walled piezoceramic sphere in a compressible fluid,” Tepl. Napryazh. Élem. Constr., 12, 111-115 (1972).

    Google Scholar 

  9. V. A. Boriseiko, V. T. Grinchenko, and A. F. Ulitko, “Electroelastic relations for piezoceramic shells of revolution,” Prikl. Mekh., 12, No. 2, 26-33 (1976).

    Google Scholar 

  10. V. A. Boriseiko, V. S. Martynenko, and A. F. Ulitko, “Electroelastic relations for piezoceramic meridionally polarized shells of revolution,” Prikl. Mekh., 15, No. 12, 36-42 (1979).

    Google Scholar 

  11. I. A. Vekovishcheva, “Theory of bending of thin piezoelectric plates,” Izv. AN Arm. SSR, Mekh., 25, No. 4, 30-37 (1972).

    Google Scholar 

  12. I. A. Vekovishcheva, “Strain distribution and electric field in an electroelastic half-space with a direct piezoelectric effect,” Prikl. Mekh., 9, No. 12, 48-52 (1973).

    Google Scholar 

  13. I. A. Vekovishcheva, “Theory of bending of thin piezoelectric plates. Derivation of natural boundary conditions,” Izv. AN SSSR, Mekh. Tverd. Tela, 25, No. 6, 108-113 (1974).

    Google Scholar 

  14. L. A. Galin, Contact Problem in the Theory of Elasticity [in Russian], Gostekhizdat, Moscow (1955).

    Google Scholar 

  15. I. P. Get'man and Yu. A. Ustinov, “The theory of inhomogeneous electroelastic plates revisited,” Prikl. Mat. Mekh., 43, No. 5, 923-932 (1979).

    Google Scholar 

  16. I. A. Glozman, Piezoceramics [in Russian], Énergiya, Moscow (1972).

    Google Scholar 

  17. E. W. Hobson, The Theory of Spherical and Ellipsoidal Harmonics, Cambridge University Press (1931).

  18. V. T. Grinchenko, Equilibrium and Steady-State Vibrations of Finite Elastic Bodies [in Russian], Naukova Dumka, Kiev (1978).

    Google Scholar 

  19. V. T. Grinchenko, A. F. Ulitko, and N. A. Shul'ga, Electroelasticity, Vol. 5 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1989).

    Google Scholar 

  20. A. N. Guz and F. G. Makhort, Acoustoelectromagnetoelasticity, Vol. 3 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  21. A. A. Erofeev, Piezoelectronic Automatic Devices [in Russian], Mashinostroenie, Leningrad (1982).

    Google Scholar 

  22. V. E. Zhirov, “Electroelastic equilibrium of a piezoceramic plate,” Prikl. Mat. Mekh., 41, No. 6, 1114-1121 (1977).

    Google Scholar 

  23. S. A. Kaloerov, A. I. Baeva, and Yu. A. Glushchenko, “Two-dimensional electroelastic problem for a multiply connected piezoelectric body with cavities and plane cracks,” Teor. Prikl. Mekh., 32, 64-79 (2001).

    Google Scholar 

  24. V. G. Karnaukhov and I. F. Kirichok, “Refined theory of laminated viscoelastic piezoceramic shells taking heat generation into account,” Prikl. Mekh., 21, No. 6, 53-60 (1985).

    Google Scholar 

  25. V. G. Karnaukhov and I. F. Kirichok, Electrothermoviscoelasticity, Vol. 4 of the five-volume series Mechanics of Coupled Fields in Structural Members [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  26. A. S. Kosmodamianskii and V. N. Lozhkin, “Generalized plane stress state of thin piezoelectric plates,” Prikl. Mekh., 11, No. 5, 45-53 (1975).

    Google Scholar 

  27. A. S. Kosmodamianskii and V. N. Lozhkin, “Asymptotic electroelastic analysis of a thin piezoelectric layer,” Prikl. Mekh., 14, No. 5, 3-8 (1978).

    Google Scholar 

  28. B. A. Kudryavtsev, “Mechanics of piezoelectric materials,” Itogi Nauki Tekhn., Ser. Mekh. Deform. Tverd. Tela, 11, VINITI, Moscow, 5-66 (1978).

    Google Scholar 

  29. B. A. Kudryavtsev, V. Z. Parton, and V. I. Rakitin, “Fracture mechanics of piezoelectric materials: A rectilinear tunnel crack in the interface with a conductor,” Prikl. Mat. Mekh., 39, No. 1, 149-159 (1975).

    Google Scholar 

  30. B. A. Kudryavtsev, V. Z. Parton, and V. I. Rakitin, “Fracture mechanics of piezoelectric materials: An axisymmetric crack in the interface with a conductor,” Prikl. Mat. Mekh., 39, No. 2, 352-362 (1975).

    Google Scholar 

  31. B. A. Kudryavtsev, V. Z. Parton, and N. A. Senik, “Piezoceramic shell polarized across the thickness. Electrode-free surfaces,” Probl. Prochn., No. 1, 79-83 (1985).

    Google Scholar 

  32. W. Cady, Piezoelectricity, Dover, New York (1964).

    Google Scholar 

  33. V. N. Lozhkin and L. N. Oleinik, “Stress state of a thin piezoelectric plate with an elliptic opening,” Mekh. Tverd. Tela, No. 8, 127-130 (1976).

    Google Scholar 

  34. V. N. Lozhkin and L. N. Oleinik, “Elastic equilibrium of an arbitrarily anisotropic piezoelectric body,” Mat. Fiz., No. 24, 98-101 (1978).

    Google Scholar 

  35. A. I. Lur'e, Three-Dimensional Elastic Problems [in Russian], Gostekhizdat, Moscow (1955).

    Google Scholar 

  36. V. V. Modarskii and Yu. A. Ustinov, “Symmetric vibrations of piezoelectric plates,” Izv. AN Arm. SSR, Ser. Mekh., 29, No. 5, 51-58 (1976).

    Google Scholar 

  37. P. M. Morse and H. Feshbach, Methods of Theoretical Physics, Vol. 1, McGraw-Hill, New York (1953).

    Google Scholar 

  38. H. Neuber, Kerbspannungslehre (Theory of Notch Stress Concentration), Springer Verlag, Berlin-Heidelberg-New York-Tokyo (1985).

    Google Scholar 

  39. W. Nowacki, Electromagnetic Effects in Solids [Russian translation], Mir, Moscow (1986).

    Google Scholar 

  40. V. V. Panasyuk, E. A. Andreikiv, and V. Z. Parton, Fundamentals of Fracture Mechanics, Vol. 1 of the four-volume series Fracture Mechanics and Strength of Materials [in Russian], Naukova Dumka, Kiev (1988).

    Google Scholar 

  41. V. Z. Parton and B. A. Kudryavtsev, Electroelasticity of Piezoceramic and Electroconductive Bodies [in Russian], Nauka, Moscow (1988).

    Google Scholar 

  42. A. H. Passos Morgado, Yu. N. Podil'chuk, and I. V. Lebedeva, “Investigation of stress state of a piezoceramic body containing an external elliptical crack,” Int. Appl. Mech., 35, No. 1, 33-40 (1999).

    Google Scholar 

  43. A. H. Passos Morgado, Yu. N. Podil'chuk, and I. V. Lebedeva, “Stress analysis of a piezoceramic body with a spheroidal inclusion,” Teor. Prikl. Mekh., 29, 28-42 (1999).

    Google Scholar 

  44. Yu. N. Podil'chuk, Boundary-Value Static Problems for Elastic Bodies, Vol. 1 of the six-volume series Three-Dimensional Problems in the Theory of Elasticity and Plasticity [in Russian], Naukova Dumka, Kiev (1984).

    Google Scholar 

  45. Yu. N. Podil'chuk, “Exact analytical solutions of three-dimensional boundary-value static problems for a transversely isotropic canonical body (review),” Prikl. Mekh., 33, No. 10, 3-30 (1997).

    Google Scholar 

  46. Yu. N. Podil'chuk, “Representation of the general solution of the static electroelastic equations for a transversely isotropic piezoceramic body in terms of harmonic functions,” Prikl. Mekh., 34, No. 7, 20-26 (1998).

    Google Scholar 

  47. Yu. N. Podil'chuk, “Electroelastic equilibrium of transversely isotropic piezoceramic media with cavities, inclusions, and cracks,” Prikl. Mekh., 34, No. 10, 109-119 (1998).

    Google Scholar 

  48. Yu. N. Podil'chuk, “On the stress state of a piezoceramic medium with a tunneled elliptical recess,” Int. Appl. Mech., 35, No. 7, 713-721 (1999).

    Google Scholar 

  49. Yu. N. Podil'chuk, “The electroelasticity problem for piezoceramic media with bilateral hyperbolic tunnel cavities,” Int. Appl. Mech., 35, No. 8, 804-811 (1999).

    Google Scholar 

  50. Yu. N. Podil'chuk, “The action of a concentrated force and a concentrated electric charge in an infinite transversally isotropic piezoceramic medium,” Int. Appl. Mech., 36, No. 4, 492-500 (2000).

    Google Scholar 

  51. Yu. N. Podil'chuk, “The stress state of a transversally isotropic piezoceramic body with a parabolic crack in a uniform heat flow,” Int. Appl. Mech., 36, No. 8, 1037-1046 (2000).

    Google Scholar 

  52. Yu. N. Podil'chuk and I. V. Lebedeva, “Equilibrium of a piezoceramic cylinder with an elliptic crack,” Prikl. Mekh., 34, No. 8, 40-48 (1998).

    Google Scholar 

  53. Yu. N. Podil'chuk and I. V. Lebedeva, “Equilibrium of piezoceramic cylinder with spheroidal cavity,” Int. Appl. Mech., 35, No. 5, 477-487 (1999).

    Google Scholar 

  54. Yu. N. Podil'chuk and A. H. Passos Morgado, “Representation of the general solution of the static thermoelectroelastic equations for a transversely isotropic piezoceramic body in terms of harmonic functions,” Teor. Prikl. Mekh., 29, 42-51 (1999).

    Google Scholar 

  55. Yu. N. Podil'chuk and A. H. Passos Morgado, “Stress distribution in a transversally isotropic piezoceramic body with an elliptic crack in a uniform heat flow,” Int. Appl. Mech., 36, 2, 203-215 (2000).

    Google Scholar 

  56. Yu. N. Podil'chuk and A. H. Passos Morgado, “The thermoelectroelastic state of a transversally isotropic piezoceramic body with a spheroidal cavity in a uniform heat flow,” Int. Appl. Mech., 36, No. 9, 1187-1197 (2000).

    Google Scholar 

  57. Yu. N. Podil'chuk and T. M. Proshchenko, “General electroelastic problem for a transversely isotropic one-sheet hyperboloid of revolution,” Teor. Prikl. Mekh., 32, 16-27 (2001).

    Google Scholar 

  58. Yu. N. Podil'chuk and T. M. Proshchenko, “Stress concentration in a piezoceramic medium near a hyperboloidal recess under pure shear,” Teor. Prikl. Mekh., 35, 20-28 (2002).

    Google Scholar 

  59. Yu. N. Podil'chuk and V. F. Tkachenko, “Contact electroelastic problem for a flat elliptic die,” Teor. Prikl. Mekh., 28, 40-51 (1998).

    Google Scholar 

  60. Yu. N. Podil'chuk and V. F. Tkachenko, “Thermoelastic contact problem for a heated elliptic die forced into a transversely isotropic piezoceramic half-space,” Teor. Prikl. Mekh., 30, 37-53 (1999).

    Google Scholar 

  61. Yu. N. Podil'chuk and V. F. Tkachenko, “Contact electroelasticity problem for a nonplane elliptical die,” Int. Appl. Mech., 35, No. 6, 544-554 (1999).

    Google Scholar 

  62. Yu. N. Podil'chuk and V. F. Tkachenko, “The contact problem of electroelasticity for a flat punch with parabolic cross-section,” Int. Appl. Mech., 35, No. 11, 1096-1103 (1999).

    Google Scholar 

  63. Yu. N. Podil'chuk and V. F. Tkachenko, “The equilibrium of a piezoceramic cylindrical body with a parabolic crack,” Int. Appl. Mech., 36, No. 3, 348-357 (2000).

    Google Scholar 

  64. I. B. Polovinkina and A. F. Ulitko, “The theory of equilibrium of piezoceramic cracked bodies,” Tepl. Napryazh. Élem. Konstr., 18, 10-17 (1978).

    Google Scholar 

  65. T. M. Proshchenko, “Electroelastic problem for a piezoceramic medium with a tunnel elliptic inclusion,” Teor. Prikl. Mekh., 34, 57-62 (2001).

    Google Scholar 

  66. L. A. Galin (ed.), Development of Contact Problems in the USSR [in Russian], Nauka, Moscow (1976).

    Google Scholar 

  67. V. A. Rvachev, “On a wedge-shaped die forced into an elastic half-space,” Prikl. Mat. Mekh., 23, No. 1, 169-171 (1959).

    Google Scholar 

  68. A. F. Ulitko, The Method of Vector Eigenfunctions in Three-Dimensional Elastic Problems [in Russian], Naukova Dumka, Kiev (1979).

    Google Scholar 

  69. A. F. Ulitko, “On some features in the formulation of boundary-value problems of electroelasticity,” in: Current Problems of Mechanics and Aviation [in Russian] (1982), pp. 290-300.

  70. Yu. A. Ustinov, “Homogeneous solutions and the limit passage from three to two dimensions for electroelastic plates with variable properties,” in: Proc. 10th All-Union Conf. on the Theory of Shells and Plates (Kutaisi, 1975) [in Russian], Vol. 1, Tbilisi (1975), pp. 286-295.

    Google Scholar 

  71. I. Yu. Khoma, “On the equations of the generalized theory of piezoelectric shells,” Prikl. Mekh., 17, No. 12, 115-118 (1981).

    Google Scholar 

  72. I. Yu. Khoma, “Developing the generalized theory of thermopiezoelastic shells,” Prikl. Mekh., 19, No. 12, 65-71 (1983).

    Google Scholar 

  73. I. Yu. Khoma, “General solution of the equilibrium equations for nonthin transversely isotropic piezoceramic plates polarized across the thickness,” Teor. Prikl. Mekh., 35, 185-193 (2002).

    Google Scholar 

  74. N. A. Shul'ga and A. M. Bolkisev, Vibrations of Piezoelectric Bodies [in Russian], Naukova Dumka, Kiev (1990).

    Google Scholar 

  75. B. Jaffe, W. R. Cook, and H. Jaffe, Piezoelectric Ceramics, Academic Press, New York (1971).

    Google Scholar 

  76. N. Bugdayci and D. B. Bogy, “A two-dimensional theory for piezoelectric layers used in electromechanical transducers,” Int. J. Solids Struct., 17, No. 12, 1179-1202 (1981).

    Google Scholar 

  77. R. L. Chowdhurry, “On an axisymmetric boundary value problem for an elastic dielectric half-space,” Int. J. Solids Struct., 18, No. 3, 263-271 (1982).

    Google Scholar 

  78. M. Y. Chung and T. C. T. Ting, “Piezoelectric solid with an elliptic inclusion or hole,” Int. J. Solids Struct., 33, No. 23, 3343-3361 (1996).

    Google Scholar 

  79. M. C. Dökmeci, “On the higher order theories of piezoelectric crystal surfaces,” J. Math. Phys., 15, No. 12, 2248-2252 (1974).

    Google Scholar 

  80. R. D. Mindin, “Equations of high frequency vibrations of thermopiesoelectric crystal plates,” Int. J. Solids Struct., 10, No. 6, 625-637 (1974).

    Google Scholar 

  81. Y. C. Pan and T. W. Chou, “Point force solution for an infinite transversally isotropic solid,” Trans. ASME, Ser. E, J. Appl. Mech., 98, 608-612 (1976).

    Google Scholar 

  82. Yu. N. Podil'chuk, “Exact analytical solutions of three-dimensional static thermoelastic problems for a transversally isotropic body in curvilinear coordinate systems,” Int. Appl. Mech., 37, No. 6, 728-761 (2001).

    Google Scholar 

  83. Yu. N. Podil'chuk and T. M. Proshchenko, “Stress concentration in a transversally isotropic piezoceramic cylinder near a hyperboloidal neck,” Int. Appl. Mech., 37, No. 8, 1034-1045 (2001).

    Google Scholar 

  84. Yu. N. Podil'chuk and L. N. Tereshchenko, “A magnetoelastic field in a ferromagnetic with an elliptic inclusion,” Int. Appl. Mech., 38, No. 5, 585-593 (2002).

    Google Scholar 

  85. Singh Bridj Mohan and S. Dhaliwal Ranjit, “Mixed boundary-value problems of steady-state thermoelasticity and electrostatics,” J. Term. Stress., 1, No. 1, 1-11 (1978).

    Google Scholar 

  86. H. A. Sosa, “Plane problems in piezoelectric media with defects,” Int. Solids Struct., 28, No. 4, 491-505 (1991).

    Google Scholar 

  87. H. Sosa and N. Khutoryansky, “New developments concerning piezoelectric materials with defects,” Int. J. Solids Struct., 33, No. 23, 3399-3414 (1996).

    Google Scholar 

  88. Wang Zi-Kung and Chen Geng-Chao, “A general solution and the application of space axisymmetric problem in piezoelectric material,” Appl. Math. Mech. Engl. Ed., 15, No. 7, 615-626 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podil'chuk, Y.N. Exact Analytical Solutions of Static Electroelastic and Thermoelectroelastic Problems for a Transversely Isotropic Body in Curvilinear Coordinate Systems. International Applied Mechanics 39, 132–170 (2003). https://doi.org/10.1023/A:1023953313612

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023953313612

Navigation