Skip to main content
Log in

Possible positive-feedback mechanisms: plants change abiotic soil parameters in wet calcareous dune slacks

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In this paper the results are presented from a mesocosm study of the effects of typical dune slack plants on the soil solution nutrient contents. In dune slack succession, early successional species often show radial oxygen loss (ROL) whereas their successor species do not show ROL. ROL has impact on abiotic soil parameters and therefore, affect the competitiveness of both species. Mesocosms with Littorella uniflora and Carex nigra, used as respectively a ROL and a non-ROL species, showed remarkable differences in soil solution parameters. Special attention was given to nitrogen, as it is the limiting resource in dune slack succession. Mesocosms with L. uniflora showed a higher nitrate content in the soil than mesocosms with C. nigra and the control. Moreover, estimating the nitrogen balance, a significantly higher fraction of nitrogen was missing in L. uniflora (57%) than in C. nigra (5%). The enhanced nitrogen loss in mesocosms with L. uniflora could act as a positive-feedback mechanism for early successional stages that slows down the vegetation development in early stages of dune slack succession towards the more-productive later stages. The mechanism could even lead to alternative stable states in dune slack succession.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adema E.B., Grootjans A.P., Petersen J. and Grijpstra J. 2002. Alternative stable states in a wet calcareous dune slack in The Netherlands. Journal of Vegetation Science 13: 107–114

    Google Scholar 

  • Aerts R. and De Caluwe H. 1997. Nutritional and plant-mediated controls on leaf litter decomposition of Carex species. Ecology 78: 244–260

    Google Scholar 

  • Ann Y., Reddy K.R. and Delfino J.J. 2000. Influence of redox potential on phosphorus solubility in chemically amended wetland organic soils. Ecological Engineering 14: 169–180.

    Google Scholar 

  • Armstrong W. 1979. Aeration in higher plants. Advances in Botanical Research 7: 226–332.

    Google Scholar 

  • Christensen P.B., Revsbech N.P. and Sand-Jensen K. 1994. Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella uniflora (L.) Ascherson. Plant-Physiology-Rockville 105: 847–852.

    Google Scholar 

  • Clements F.E. 1916. Plant Succession. Carnegie Institute Washington Publication 242, Washington.

    Google Scholar 

  • Dougherty K.M., Mendelssohn I.A. and Monterferrante F.J. 1990. Effect of nitrogen, phosphorus and potassium additions on plant biomass and soil nutrient content of a swale barrier strand community in Louisiana. Annals of Botany 66: 265–271.

    Google Scholar 

  • Gloser V., Scheurwater I. and Lambers H. 1996. The interactive effect of irradiance and source of nitrogen on growth and root respiration of Calamagrostis epigejos. The New Phytologist 134: 407–412.

    Google Scholar 

  • Holdren G.C. and Armstrong D.E. 1980. Factors affecting phosphorus release from intact lake sediment cores. Environmental Science and Technology 14: 79–87.

    Google Scholar 

  • Holmer M., Jensen H.S., Christensen K.K., Wigand C. and Andersen F.O. 1998. Sulfate reduction in lake sediments inhabited by the isoetid macrophytes Littorella uniflora and Isoetes lacustris. Aquatic-Botany 60: 307–324.

    Google Scholar 

  • Jones R. 1975. Comparative studies of plant growth and distribution in relation to waterlogging. VIII. The uptake of phosphorus by dune and dune slack plants. Journal of Ecology 63: 109–116.

    Google Scholar 

  • Justin S.H.F.W. and Armstrong W. 1987. The anatomical characteristics of roots and plant response to soil flooding. The New Phytologist 106: 465–495.

    Google Scholar 

  • Koerselman W. and Meuleman A.F.M. 1996. The vegetation N:P ratio: A new tool to detect the nature of nutrient limitation. Journal of Applied Ecology 33: 1441–1450.

    Google Scholar 

  • Konçalova H. 1988. Root ventilation in Carex gracilis Curt: diffusion or mass-flow? Aquatic Botany 30: 149–155.

    Google Scholar 

  • Lammerts E.J., Pegtel D.M., Grootjans A.P. and Van der Veen A. 1999. Nutrient limitation and vegetation changes in a coastal dune slack. Journal of Vegetation Science 10: 111–122.

    Google Scholar 

  • Moore P.A. and Reddy K.R. 1994. Role of Eh and pH on phosphorus geochemistry in sediments of lake Okeechobee, Florida. Journal of Environmental Quality 23: 955–964.

    Google Scholar 

  • Nielsen S.L., Gacia E. and Sand-Jensen K. 1991. Land plants of amphibious Littorella uniflora (L.) Ashers. maintain utilization of CO2 from the sediment. Oecologia 88: 258–262.

    Google Scholar 

  • Olff H., Huisman J. and Van Tooren B.F. 1993. Species dynamics and nutrient accumulation during early primary succession in coastal sand dunes. Journal of Ecology 81: 693–706.

    Google Scholar 

  • Ottosen L.D.M., R isgaard-Petersen N. and Nielsen L.P. 1999. Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquatic Microbial Ecology 19: 81–91.

    Google Scholar 

  • Patrick W.H. and Khalid R.A. 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186: 53–55

    Google Scholar 

  • Petersen J. 2000. Die Dünentalvegetation der Wattenmeer – Inseln in der südlichen Nordsee. Eine pflanzensoziologische und ökologische Vergleichsuntersuchung unter Berücksichtigung von Nutzung und Naturschutz. Husum Druck – und Verlagsgesellschaft, Husum.

    Google Scholar 

  • Ponnamperuma F.N. 1984. Effects of flooding on soils. In: Kozlowski T.T. (ed.), Flooding and plant growth. Academic Press, New York, pp. 9–45

    Google Scholar 

  • Raskin I. and Kende H. 1985. Mechanism of aeration in rice. Science 228: 327–329.

    Google Scholar 

  • Robe W.E. and Griffiths H. 1994. The impact of NO -3 loading on the fresh-water macrophyte Littorella uniflora – N-utilization strategy in a slow-growing species from oligotrophic habitats. Oecologia 100: 368–378

    Google Scholar 

  • Robe W.E. and Griffiths H. 2000. Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Littorella uni-flora, during the transition from aquatic to dry terrestrial environments. Plant Cell and Environment 23: 1041–1054.

    Google Scholar 

  • Schaminée J.H.J., Weeda E.J. and Westhoff V. 1995. De vegetatie van Nederland 2. Plantengemeenschappen van wateren, moerassen en natte heiden. Opulus Press, Uppsala.

    Google Scholar 

  • Sival F. and Grootjans A.P. 1996. Dynamics of seasonal bicarbonate supply in a dune slack: Effects on organic matter, nitrogen pool and vegetation succession. Vegetatio 126: 39–50.

    Google Scholar 

  • Smits A.J.M., Laan P., Thier R.H. and Van Der Velde G. 1990. Root aerenchyma, oxygen leakage patterns and alcoholic fermentation ability of the roots of some nymphaeid macrophytes in relation to the sediment type of their habitat. Aquatic Botany 38: 3–17.

    Google Scholar 

  • Stumm W. and Morgan J.J. 1981. Aquatic chemistry: an introduction emphasizing chemical equilibria in natural waters. Wiley and Sons, New York.

    Google Scholar 

  • Stuyfzand P.J., Lüers F. and Grootjans A.P. 1992. Hydrochemie en hydrologie van het Kapenglop, een natte duinvallei op Schiermonnikoog. report: SWE 92.038. Kiwa, Nieuwegein.

    Google Scholar 

  • Van der Meijden R. 1996. Heukels' Flora van Nederland. Wolters-Noordhoff, Groningen.

    Google Scholar 

  • Visser E.J.W., Bogemann G.M., Van de Steeg H.M., Pierik R. and Blom C.W.P.M. 2000. Flooding tolerance of Carex species in relation to field distribution and aerenchyma formation. The New Phytologist 148: 93–103.

    Google Scholar 

  • Willis A.J. 1963. Braunton Burrows: the effects on the vegetation of the addition of mineral nutrients to the dune soils. Journal of Ecology 51: 353–374.

    Google Scholar 

  • Wilson J.B. and Agnew A.D.Q. 1992. Positive-feedback switches in plant communities. Advances in Ecological Research 23: 263–337.

    Google Scholar 

  • Yamasaki S., Kimura M. and Yoneyama T. 1992. Early withering of lower leaves of Phragmites australis (cav) Trin. ex Steud. in a eutrophic stand: role of oxygen concentration, fate of nitrogen and nitrogen uptake by the plants. Aquatic Botany 42: 143–157.

    Google Scholar 

  • Zar J.H. 1984. Biostatistical analyses. Prentice-Hall, New Jersey.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erwin B. Adema.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adema, E.B., Grootjans, A.P. Possible positive-feedback mechanisms: plants change abiotic soil parameters in wet calcareous dune slacks. Plant Ecology 167, 141–149 (2003). https://doi.org/10.1023/A:1023947411605

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023947411605

Navigation