Skip to main content
Log in

Thermodynamical modeling of silicon carbide synthesis in thermal plasma

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

The synthesis process of solid SiC in thermal plasma was investigated theoretically by computing the equilibrium composition of the gas mixtures involving silicon and carbon in the presence of argon and hydrogen at various silicon/carbon amounts and at two different total pressures in the system, in the temperature range between 1000 and 6000 K. Use is made of the fact that a thermal plasma, by definition, is a plasma in (local) thermodynamical equilibrium, which makes possible the theoretical determination of its equilibrium composition at definite temperature by employing Gibbs free energy data for the compounds present in the system. From the calculated compositions of the investigated gas systems the temperature-composition phase diagrams were obtained. Using these data the temperature zones with saturated and/or oversaturated vapour of SiC as well as of Si and C were determined and the possibility of the formation of SiC in the solid state via different reaction routes was analyzed

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. G. Acheson, Engl. Pat., 17 911 (1892).

    Google Scholar 

  2. J. A. Lely, Berichte der Deutschen Keramischen Gesellscaft, 32 (1955) 229.

    Google Scholar 

  3. J. A. Powell, J. B. Petit, J. M. Edgar, I. G. Jenkins, L. G. Matus, J. W. Yang, P. Pirouz, W. J. Choyke, L. Clemen and M. Yoganathan, Appl. Phys. Lett., 59 (1991) 333.

    Article  CAS  Google Scholar 

  4. T. Sugii, T. Aoyama and T. Ito, J. Electrochem. Soc., 137 (1990) 989.

    Article  CAS  Google Scholar 

  5. P. Kong, R. M. Young, T. T. Huang and E. Pfender, Beta-SiC synthesis in an atmospheric pressure convection-stabilized arc, 7th International Symposium on Plasma Chemistry, Eindhoven, The Netherlands, July 1985, p. 674.

  6. L. Stachowicz, S. K. Singh, E. Pfender and S. L. Girshick, Plasma Chem. Plasma Process, 13 (1993) 447.

    Article  CAS  Google Scholar 

  7. J. Y. Guo, F. Gitzhofer and M. I. Boulos, Plasma Chem. Plasma Process, 17 (1997) 219.

    CAS  Google Scholar 

  8. V. Balek, V. Zelenák, T. Mitsuhashi, S. Bekerdieva, J. Šubrt and H. Haneda, J. Therm. Anal. Cal., 67 (2002) 83.

    Article  CAS  Google Scholar 

  9. U. Shayachmetov, J. Therm. Anal. Cal., 64 (2001) 1153.

    Article  CAS  Google Scholar 

  10. P. Fauchais and E. Bourdin, J. Phys. Colloq. C3, 38 (1977) C3-111.

    Google Scholar 

  11. W. B. White, S. M. Johnson and S. B. Dantzig, J. Chem. Phys., 28 (1958) 751.

    Article  CAS  Google Scholar 

  12. J. Radić-Perić and M. Perić, Spectrochim. Acta, 35B (1980) 297.

    Google Scholar 

  13. JANAF Thermodynamical Tables, Nat. Stand. Ref. Data Ser. S Nat. Bur. Stand., 37, 1971.

  14. N. Pantelić, Diplom thesis, (2002).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Radić-Perić.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Radić-Perić, J., Pantelić, N. Thermodynamical modeling of silicon carbide synthesis in thermal plasma. Journal of Thermal Analysis and Calorimetry 72, 35–45 (2003). https://doi.org/10.1023/A:1023943030263

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023943030263

Navigation