Skip to main content
Log in

A simple mathematical model of the process of Candida utilis growth in a bioreactor

  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A methodology is suggested in this paper for the description of microbial processes following a pattern similar to that used for the description of chemical processes in which physical and chemical phenomena occurring in reactors are considered. The description is based on stoichiometric relations, kinetics and mass transfer characteristics. For process simulation, only the kinetic parameters are necessary as experimental data. The stoichiometry of the conversion reactions is calculated by using the black box model which is based on elemental balances and from the yield of biomass from the C-source. The volumetric mass transfer coefficient is estimated by using a theoretical model based on a mechanical energy balance, Higbie's penetration theory and Kolmogoroff's theory of isotrophic turbulence. It is shown that the method can be used to simulate the curves of biomass production, substrate consumption, variation of dissolved oxygen concentration and carbon dioxide production for batch cultures of Candida utilis conducted in an airlift reactor over a wide range of growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrews, G. 1989 Estimating cell and product yields. Biotechnology and Bioengineering 33, 256–265.

    Article  CAS  Google Scholar 

  • Calderbank, P.H. 1958 Physical rate processes in industrial fermentation. Part I: the interfacial area in gas-liquid contacting with mechanical agitation. Transactions of the Institution of Chemical Engineers 36, 443–463.

    Google Scholar 

  • Calderbank, P.H. 1959 Physical rate processes in industrial fermentation. Part II: mass transfer coefficient in gas-liquid contacting with andwithout mechanical agitation. Transactions of The Institution of Chemical Engineers 37, 173–185.

    CAS  Google Scholar 

  • Chen, B.H. & Yang, N.S. 1989 Characteristics of a cocurrent multistage bubble column. Industrial and Engineering Chemistry Research 28, 1405–1410.

    Article  CAS  Google Scholar 

  • Chisti, M.Y. & Moo-Young, M. 1988 Hydrodynamics and oxygen transfer in pneumatic bioreactor devices. Biotechnology and Bioengineering 31, 487–494.

    Article  CAS  Google Scholar 

  • Doran, P.M. 1995 Bioprocess Engineering Principles. London: Academic Press, ISBN: 0-122-20856-0.

    Google Scholar 

  • Erickson, L.E. 1980 Material andenergy balance constrains on bioprocesses yields. Journal of Fermentation Technology 58, 53–61.

    CAS  Google Scholar 

  • García-Calvo, E. & Leto n, P. 1996 Prediction of gas hold-up and liquidvelocity in airlift reactors using two-phase flow friction coefficients. Journal of Chemical Technology and Biotechnology 67, 388–396.

    Article  Google Scholar 

  • Heijnen, J.J. & Roels, J.A. 1981 A macroscopic model describing yield andmaintenanc e relationships in aerobic fermentation processes. Biotechnology and Bioengineering 23, 739–763.

    Article  CAS  Google Scholar 

  • Heijnen, J.J. & van Dijken, J.P. 1992 In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotechnology and Bioengineering 39, 833–858.

    Article  CAS  Google Scholar 

  • Ju, L.K. & Ho, C.S. 1988 Simultaneous measurements of oxygen diffusion coefficients and solubilities in fermentation media with polarographic oxygen electrodes. Biotechnology and Bioengineering 31, 995–1005.

    Article  CAS  Google Scholar 

  • Lide, D.R. 2001 CRC Handbook of Chemistry and Physics, 82nd edn. Florida: CRC Press, ISBN 0-849-30482-2.

    Google Scholar 

  • McCready, R.M., Guggolz, J. & Owens, H.S. 1950 Determination of starch andamylose in vegetables. Application to peas. Analytical Chemistry 22, 1156–1158.

    Article  CAS  Google Scholar 

  • Merchuk, J.C. 1977 Further considerations on the enhancement of oxygen transfer in fermentation broths. Biotechnology and Bioengineering 19, 1885–1889.

    Article  CAS  Google Scholar 

  • Merchuk, J.C., Yona, S., Siegel, M.H. & Ben-Zvi, S. 1990 On the firstorder approximation to the response of dissolved oxygen electrodes for dynamic KLa estimation. Biotechnology and Bioengineering 35, 1161–1163.

    Article  CAS  Google Scholar 

  • Nielsen, J. & Villadsen, J. 1992 Modeling of microbial kinetics. Chemical Engineering Science 47, 4225–4270.

    Article  CAS  Google Scholar 

  • Nielsen, J. & Villadsen, J. 1994 Bioreaction Engineering Principles. Academic/Plenum Publishing Corporation, New York: Kluwer ISBN 0-306-44688-X.

    Book  Google Scholar 

  • Noorman, H., Heijnen, J.J. & Luyben, KchAM. 1991 Linear relations in microbial reaction systems: a general overview of their origin, form and use. Biotechnology and Bioengineering 38, 603–618.

    Article  CAS  Google Scholar 

  • Paredes-Lopez, O., Camargo-Rubio, E. & Ornelas-Vale, A. 1976 Influence of specific growth rate on biomass yieldprod uctivity and composition of Candida utilis in batch and continuous culture. Applied and Environmental Microbiology 31, 487–491.

    Article  CAS  Google Scholar 

  • Peinado, J.M., Cameira-Dos-Santos, P.J. & Loureido-Dias, M.C. 1988 Regulation of glucose transport in Candida utilis. Journal of General Microbiology 134, 195–201.

    Google Scholar 

  • Perry, R.H. & Green, D.W. 1998 Perry's Chemical Engineers' Handbook, 7th edn. Australia: McGraw Hill International Editions, ISBN 0-07-115982-7.

    Google Scholar 

  • Postma, E., Kuiper, A., Tomasouw, W.F., Scheffers, W.A. & van Dijken, J.P. 1989 Competition for glucose between the yeasts Saccharomyces cerevisiae and Candida utilis. Applied and Environmental Microbiology 55, 3214–3220.

    Article  CAS  Google Scholar 

  • Roels, J.A. 1980 Bioengineering report. Application of macroscopic principles to microbial metabolism. Biotechnology and Bioengineering 22, 2457–2514.

    Article  CAS  Google Scholar 

  • Schügerl, K. 1982 New bioreactors for aerobic processes. International Chemical Engineering 22, 591–610.

    Google Scholar 

  • Tobajas, M. & Garcia-Calvo, E. 1999 Determination of biomass yield for growth of Candida utilis on glucose: black box and metabolic descriptions. World Journal of Microbiolo gy and Biotechnology 15, 431–438.

    Article  CAS  Google Scholar 

  • Tobajas, M. & Garcia-Calvo, E. 2000 Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes. Heat and Mass Transfer 36, 201–207.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tobajas, M., García-Calvo, E., Wu, X. et al. A simple mathematical model of the process of Candida utilis growth in a bioreactor. World Journal of Microbiology and Biotechnology 19, 391–398 (2003). https://doi.org/10.1023/A:1023942602041

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023942602041

Navigation