Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Machine Learning
  3. Article

Analysis and Visualization of Gene Expression Microarray Data in Human Cancer Using Self-Organizing Maps

  • Published: July 2003
  • Volume 52, pages 45–66, (2003)
  • Cite this article
Download PDF
Machine Learning Aims and scope Submit manuscript
Analysis and Visualization of Gene Expression Microarray Data in Human Cancer Using Self-Organizing Maps
Download PDF
  • Sampsa Hautaniemi1,
  • Olli Yli-Harja1,
  • Jaakko Astola1,
  • Päivikki Kauraniemi2,
  • Anne Kallioniemi2,
  • Maija Wolf3,4,
  • Jimmy Ruiz3,
  • Spyro Mousses3 &
  • …
  • Olli-P. Kallioniemi3,4 
  • 941 Accesses

  • 35 Citations

  • Explore all metrics

Abstract

cDNA microarrays permit massively parallel gene expression analysis and have spawned a new paradigm in the study of molecular biology. One of the significant challenges in this genomic revolution is to develop sophisticated approaches to facilitate the visualization, analysis, and interpretation of the vast amounts of multi-dimensional gene expression data. We have applied self-organizing map (SOM) in order to meet these challenges. In essence, we utilize U-matrix and component planes in microarray data visualization and introduce general procedure for assessing significance for a cluster detected from U-matrix. Our case studies consist of two data sets. First, we have analyzed a data set containing 13,824 genes in 14 breast cancer cell lines. In the second case we show an example of the SOM in drug treatment of prostate cancer cells. Our results indicate that (1) SOM is capable of helping finding certain biologically meaningful clusters, (2) clustering algorithms could be used for finding a set of potential predictor genes for classification purposes, and (3) comparison and visualization of the effects of different drugs is straightforward with the SOM. In summary, the SOM provides an excellent format for visualization and analysis of gene microarray data, and is likely to facilitate extraction of biologically and medically useful information.

Article PDF

Download to read the full article text

Similar content being viewed by others

Progressive Clustering and Characterization of Increasingly Higher Dimensional Datasets with Living Self-organizing Maps

Chapter © 2020

Identification of expression patterns in the progression of disease stages by integration of transcriptomic data

Article Open access 22 November 2016

Sara Aibar, Maria Abaigar, … Javier De Las Rivas

Kohonen’s Self-organizing Map Optimizing Prediction of Gene Dependency for Cancer Mediating Biomarkers

Chapter © 2019
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Chen, D.-R., Chang, R.-F., & Huang, Y.-L. (2000). Breast cancer diagnosis using self-organizing maps for sonog-raphy. Ultrasound in Medicine and Biology, 26:3, 405–411.

    Google Scholar 

  • Chen, G., Jaradat, S., Banerjee, N., Tanaka, T., Ko, M., & Zhang, M. (2002). Evaluation and comparison of clustering algorithms in analyzing ES cell gene expression data. Statistica Sinica, 12, 241–262.

    Google Scholar 

  • Eisen, M., Spellman, P., Brown, P., & Botstein, D. (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences, USA, 95, 14863–14868.

    Google Scholar 

  • Gibbons, F., & Roth, F. (2002). Judging the quality of gene expression-based clustering methods using gene annotation. Genome Research, 12, 1574–1581.

    Google Scholar 

  • Hautaniemi, S., Ringnér, M., Kauraniemi, P., Kallioniemi, A., Edgren, H., Yli-Harja, O., Astola, J., & Kallion-iemi, O.-P. (2002). A strategy for identifying putative causes of gene expression variation in human cancer. In Proceedings of Workshop on Genomic Signal Processing and Statistics (GENSIPS), Raleigh, NC, USA, Oct. 2002.

  • Haykin, S. (1999). Neural Networks, a Comprehensive Foundation, 2nd edition, Prentice Hall.

  • Hedenfalk, I., Duggan, D., Chen, Y., Radmacher, M., Bittner, M., Simon, R., Meltzer, P., Gusterson, B., Esteller, M., Kallioniemi, O.-P., Wilfond, B., Borg, Å., & Trent, J. (2001). Gene-expression profiles in hereditary breast cancer. The New England Journal of Medicine, 344:8, 539–548.

    Google Scholar 

  • Hill, A., Hunter, C., Tsung, B., Tucker-Kellogg, G., & Brown, E. (2000). Genomic analysis of gene expression in C. elegans. Science, 290, 809–812.

    Google Scholar 

  • Hyman, E., Kauraniemi, P., Hautaniemi, S., Wolf, M., Mousses, S., Rozenblum, E., Ringnér, M., Sauter, G., Monni, O., Elkahloun, A., Kallioniemi, A., & Kallioniemi, O.-P. (2002). Impact of DNA amplification on gene expression patterns in breast cancer. Cancer Research, in press.

  • Kallioniemi, A., Kallioniemi, O.-P., Sudar, D., Rutovitz, D., Gray, J., Waldman, F., & Pinkel, D. (1992). Comparative genomic hybridization for molecular cytogenetic analysis of solid tumors. Science, 258, 818–882.

    Google Scholar 

  • Kaski, S., Kangas, J., & Kohonen, T. (1998). Bibliography of self-organizing map (SOM) papers: 1981–1997. Neural Computing Surveys 1, 102–350.

    Google Scholar 

  • Kaski, S., Nikkilä, J., Törönen, P., Castrén, E., & Wong, G. (2001). Analysis and visualization of gene expression data using self-organizing maps. In Proceedings of NSIP-01, IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing.

  • Kaski, S., & Sinkkonen, J. (2002). Clustering based on conditional distributions in an auxiliary space. Neural Computation, 14, 217–239.

    Google Scholar 

  • Kauraniemi, P., Bärlund, M., Monni, O., & Kallioniemi, A. (2001). New amplified and highly expressed genes discovered in the ERBB2 amplicon in breast cancer by cDNA microarrays. Cancer Research, 61, 8235–8240.

    Google Scholar 

  • Kohonen, T. (2001). Self-Organizing Maps, 3rd edn., Springer.

  • Mangiameli, P., Chen, S., & West, D. (1996). A comparison of SOM neural network and hierarchical clustering methods. European Journal of Operational Research, 93, 402–417.

    Google Scholar 

  • Monni, O., Bärlund, M., Mousses, S., Kononen, J., Sauter, G., Heiskanen, M., Paavola, P., Avela, K., Chen, Y., Bittner, M., & Kallioniemi, A. (2001). Comprehensive copy number and gene expression profiling of the 17q23 amplicon in human breast cancer. Proceedings of the National Academy of Sciences, USA, 98:10, 5711–5716.

    Google Scholar 

  • Mousses, S., Wagner, U., Chen, Y., Kim, J., Bubendorf, L., Bittner, M., Pretlow, T., Elkahloun, A., Trepel, J., & Kallioniemi, O.-P. (2001). Failure of hormone therapy in prostate cancer involves systematic restoration of androgen responsive genes and activation of rapamycin sensitive signaling. Oncogene, 20:46, 6718–6723.

    Google Scholar 

  • Oja, M., Nikkilä, J., Törönen, P., Wong, G., Castrén, E., & Kaski, S. (2002). Exploratory clustering of gene expression profiles of mutated yeast strains. In W. Zhang & I. Shmulevich (Eds.), Computational and Statistical Approaches to Genomics, Kluwer Academic Publishers.

  • Parmigiani, G., Garrett, E., Anbazhagan, R., & Gabrielson, E. (2002). Astatistical framework for expression-based molecular classification in cancer. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 64, 1–20.

    Google Scholar 

  • Pollack, J., Perou, C., Alizadeh, A., Eisen, M., Pergamenschikov, A., Williams, C., Jeffrey, S., Botstein, D., & Brown, P. (1999). Genome-wide analysis of DNA copy-number changes using cDNA microarrays. Nature Genetics, 23:1, 41–46.

    Google Scholar 

  • Ramaswamy, S., Tamayo, P., Rifkin, R., Mukherjee, S., Yeang, C., Angelo, M., Ladd, C., Reich, M., Latulippe, E., Mesirov, J., Poggio, T., Gerald, W., Loda, M., Lander, E., & Golub, T. (2001). Multiclass cancer diagnosis using tumor gene expression signatures. Proceedings of the National Academy of Sciences, USA, 98:26, 15149–15154.

    Google Scholar 

  • Raychaudhuri, S., Stuart, J., & Altman, R. (2000). Principal components analysis to summarize microarray ex-periments: Application to sporulation time series. Proceedings of the Pacific symposium on Bioinformatics, 5, 452–463.

    Google Scholar 

  • Siegler, M., Jain, U., Raj, B., & Stern, R. (1997). Automatic segmentation, classification and clustering of broadcast news audio. In Proceedings of the DARPA Speech Recognition Workshop (97–99).

  • Tamayo, P., Slonim, D., Mesirov, J., Zhu, Q., Kitareewan, S., Dmitrovsky, E., Lander, E., & Golub, T. (1999). Interpreting patterns of gene expression with self-organizing maps; methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences, USA, 96, 2907–2912.

    Google Scholar 

  • Törönen, P., Kolehmainen, M., Wong, G., & Castrén, E. (1999). Analysis of gene expression data using self-organizing maps. FEBS Letters, 451:2, 142–146.

    Google Scholar 

  • Ultsch, A., & Siemon, H. (1989). Exploratory data analysis: Using Kohonen networks on transputers. Technical Report 329, University of Dortmund, Germany.

    Google Scholar 

  • Vesanto, J., Himberg, J., Alhoniemi, E., & Parhankangas, J. (2000). SOM toolbox for Matlab 5. Technical Report A57, Helsinki University of Technology, Finland.

    Google Scholar 

  • Wall, M., Dyck, P., & Brettin, T. (2001). SVDMAN-singular value decomposition analysis of microarray data. Bioinformatics, 17:6, 566–568.

    Google Scholar 

  • Xiong, M., Fang, X., & Zhao, J. (2001). Biomarker identification by feature wrappers. Genome Research, 11:11, 1878–1887.

    Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Institute of Signal Processing, Tampere University of Technology, PO Box 553, 33101, Tampere, Finland

    Sampsa Hautaniemi, Olli Yli-Harja & Jaakko Astola

  2. Laboratory of Cancer Genetics, Institute of Medical Technology, University of Tampere and Tampere University Hospital, FIN-33520, Tampere, Finland

    Päivikki Kauraniemi & Anne Kallioniemi

  3. Cancer Genetics Branch, National Human Genome Research Institute, National Institutes of Health, USA

    Maija Wolf, Jimmy Ruiz, Spyro Mousses & Olli-P. Kallioniemi

  4. Medical Biotechnology Group, VTT Technical Research Centre of Finland and University of Turku, PO Box 106, 20521, Turku, Finland

    Maija Wolf & Olli-P. Kallioniemi

Authors
  1. Sampsa Hautaniemi
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Olli Yli-Harja
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jaakko Astola
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Päivikki Kauraniemi
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Anne Kallioniemi
    View author publications

    You can also search for this author in PubMed Google Scholar

  6. Maija Wolf
    View author publications

    You can also search for this author in PubMed Google Scholar

  7. Jimmy Ruiz
    View author publications

    You can also search for this author in PubMed Google Scholar

  8. Spyro Mousses
    View author publications

    You can also search for this author in PubMed Google Scholar

  9. Olli-P. Kallioniemi
    View author publications

    You can also search for this author in PubMed Google Scholar

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hautaniemi, S., Yli-Harja, O., Astola, J. et al. Analysis and Visualization of Gene Expression Microarray Data in Human Cancer Using Self-Organizing Maps. Machine Learning 52, 45–66 (2003). https://doi.org/10.1023/A:1023941307670

Download citation

  • Issue Date: July 2003

  • DOI: https://doi.org/10.1023/A:1023941307670

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • bioinformatics
  • gene expression in human cancer
  • self-organizing map
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

167.114.118.212

Not affiliated

Springer Nature

© 2024 Springer Nature