Skip to main content
Log in

A batch process to deposit amorphous metallic Mo–Si–N films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A process for depositing amorphous electrically conducting Mo–Si–N films in a batch-type reactive sputtering system has been developed. Each elemental constituent in the film is individually adjustable: molybdenum and silicon through the electrical power applied to the separate targets, and nitrogen through the gas flow rate. Argon is used for the tuning of the intrinsic stress. The amorphous structure of a Mo31Si18N45 film is confirmed by cross-sectional transmission electron microscopy and electron diffraction. The structure remains unchanged up to at least 700 °C for 1 min of annealing in an argon ambient. In the process, the room-temperature resistivity decreases from an initial value of about 1.1 to about 1.0 mΩ cm with no change in the film thickness. After 1100 °C for one minute, grains nucleate and the film resistivity falls by two-thirds. The intrinsic stress in Mo–Si–N films is significantly more uniform throughout the film area than in polycrystalline molybdenum films. These results hold promise for applications of Mo–Si–N films in micromechanical devices. Self-supported beams and membranes have been successfully delaminated from their silicon substrates; molybdenum-rich films are more ductile than silicon-rich films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-A. Nicolet, I. Suni and M. Finetti, Solid State Technol. 26(12) (1983) 129.

    Google Scholar 

  2. J. S. Reid, “Amorphous ternary diffusion barriers for silicon metallizations”, Thesis, California Institute of Technology (1995).

  3. W. J. Dauksher, D. J. Resnick, K. D. Cummings, J. Baker, R. B. Gregory, N. D. Theodore, J. A. Chan, W. A. Johnson, C. J. Mogab, M.-A. Nicolet and J. S. Reid, J. Vac. Sci. Technol. B 13(6) (1995) 3103.

    Google Scholar 

  4. P. Torri, J.-P. Hirvonen, H. Kung, Y.-C. Lu, M. Nastasi and P. N. Gibson, J. Vac. Sci. Technol. B 17(4) (1999) 1329.

    Google Scholar 

  5. C. Linder, A. Dommann, G. Staufert and M.-A. Nicolet, Sens. Actuators A-Phys. 61 (1997) 387.

    Google Scholar 

  6. Y. Liu, S. Hata, K. Wada and A. Shimokohbe, in Technical Digest MEMS 2001.

  7. Y. Saotome and A. Inoue, in Technical Digest MEMS 2000, The Thirteenth Annual International Conference on Micro Electro Mechanical Systems, Miyazaki, Japan, January 2000 (IEEE, 2000).

  8. R. Legtenberg, H. A. C. Tilmans, J. Elders and M. Elwenspoek, Sens. Actuators A-Phys. 43 (1994) 230.

    Google Scholar 

  9. N. Maluf, in “An Introduction to Microelectromechanical Systems Engineering” (Artech House, Norwood, MA, 2000).

    Google Scholar 

  10. D. W. Hoffman, J. Vac. Sci. Technol. A 12 (1994) 953.

    Google Scholar 

  11. H. Kattelus, J. Koskenala, A. Nurmela and A. Niskanen, Microelectron. Eng. 60 (2002) 97.

    Google Scholar 

  12. M.-A. Nicolet and P. H. Giauque, ibid. 55 (2001) 357.

    Google Scholar 

  13. M. Oizumi, K. Aoki and Y. Fukuda, Jpn. J. Appl. Phys. 40 (2001) L603.

    Google Scholar 

  14. U. Gottlieb, X. Sun, E. Kolawa and M.-A. Nicolet, Proc. Mat. Res. Soc. Symp. 427 (1996) 361.

    Google Scholar 

  15. U. Gottlieb, O. Laborde, P. H. Giauque, M.-A. Nicolet and R. Madar, Microelectron. Eng. 60 (2002) 107.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kattelus, H., Heikkinen, H., Häärä, A. et al. A batch process to deposit amorphous metallic Mo–Si–N films. Journal of Materials Science: Materials in Electronics 14, 427–430 (2003). https://doi.org/10.1023/A:1023925423733

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023925423733

Keywords

Navigation