Skip to main content
Log in

Crystallization kinetic of fluoro- zirconate glasses by non-isothermal analysis

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

Fluoride glasses have been extensively studied due to their high transparency in the infrared wavelength. The crystallization kinetics of these systems has been studied using DTA and DSC techniques. Most of the experimental data is frequently investigated in terms of the Johnson-Mehl-Avrami (JMA) model in order to obtain kinetic parameters. In this work, DSC technique has been used to study the crystallization of fluorozirconate glass under non-isothermal conditions. It was found that JMA model was not fit to be applied directly to these systems, therefore, the method proposed by Málek has been applied and the Šesták-Berggren (SB) model seems to be adequate to describe the crystallization process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Poulain, Mat. Res. Bull., 10 (1975) 243.

    Article  CAS  Google Scholar 

  2. M. Poulain, J. Non-Cryst. Sol., 56 (1983) 1.

    Article  CAS  Google Scholar 

  3. S. J. L. Ribeiro, P. Goldner and F. Auzel, J. Non-Cryst. Sol., 219 (1997) 176.

    Article  CAS  Google Scholar 

  4. M. G. Drexhage, Perspective and overview, In: P. W. France (Ed.), Fluoride Glass Optical Fibres, CRC Press, Florida 1989, p. 1.

    Google Scholar 

  5. H. Matsumura and T. Katsuyama, Basic concepts of optical fibres, In: Infrared Optical Fibres, Adam Hilger 1989, p. 4.

  6. E. Urbanovici and E. Segal, Thermochim. Acta, 171 (1990) 95.

    Article  Google Scholar 

  7. J. Málek, J. Thermal Anal., 38 (1992) 7.

    Article  Google Scholar 

  8. J. Málek, J. Mat. Res., 16 (2001) 1862.

    Google Scholar 

  9. W. A. Johnson and R. F. Mehl, Trans. Am. Inst. Min. Met. Eng., 135 (1939) 416.

    Google Scholar 

  10. M. J. Avrami, J. Chem. Phys., 7 (1939) 1103.

    Article  CAS  Google Scholar 

  11. M. S. Chen, J. Non-Cryst. Sol., 12 (1978) 150.

    Google Scholar 

  12. J. Málek, J. Therm. Anal. Cal., 56 (1999) 763.

    Article  Google Scholar 

  13. J. Málek, Thermochim. Acta, 355 (2000) 239.

    Article  Google Scholar 

  14. H. L. Friedman, J. Polym. Sci., Part C.: Polym. Lett., 6 (1964) 183.

    Google Scholar 

  15. T. Ozawa, J. Thermal Anal., 31 (1986) 547.

    Article  CAS  Google Scholar 

  16. T. Ozawa, Bull. Chem. Soc. Japan, 38 (1966) 1881.

    Google Scholar 

  17. J. H. Flynn and L. A. Waal, Polym. Lett., 4 (1966) 323.

    Article  CAS  Google Scholar 

  18. D. V. Silva, Estudo de sistemas vitreos a base de ZrF4 com applicações em fibres ópticas, 2001, Doctorate Thesis, Instituto de Química, Universidade Estadual Paulista, Araraquara.

    Google Scholar 

  19. N. P. Bansal, R. H. Doremus, A. J. Bruce and C. T. Moynihan, Mat. Res. Bull., 19 (1984) 577.

    Article  CAS  Google Scholar 

  20. B. J. Costa, M. Poulain, Y. Messaddeq and S. J. L. Ribeiro, J. Non-Cryst. Sol., 273 (2000) 76.

    Article  CAS  Google Scholar 

  21. J. Šesták and G. Berggren, Thermochim. Acta, 3 (1971) 1.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Silva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Silva, D.V., Ribeiro, C.A. & Crespi, M.S. Crystallization kinetic of fluoro- zirconate glasses by non-isothermal analysis. Journal of Thermal Analysis and Calorimetry 72, 151–157 (2003). https://doi.org/10.1023/A:1023919719785

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023919719785

Navigation