Skip to main content
Log in

The Effect of the Characteristic Dimension of a Microstructural Material and the Trough Length of a Solitary Wave on its Evolution

  • Published:
International Applied Mechanics Aims and scope

Abstract

The profile of a solitary wave as a function of the trough size is studied. Profiles are specified in the form of the Chebyshov–Hermite and Whittaker functions. The convenience of introducing a new parameter in units of length is demonstrated

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. A. Bedford, H. J. Sutherland, and R. Lingle, “On theoretical and experimental wave propagation in a fiber-reinforced elastic material,” ASME, Appl. Mech., 39, No. 2 (1972).

  2. Ya. Ya. Rushchitskii, Elements of Mixture Theory [in Russian], Naukova Dumka, Kiev (1991).

    Google Scholar 

  3. Ya. Ya. Rushchitskii, “Nonlinear waves in solid mixtures (review),” Prikl. Mekh., 34, No. 1, 3-38 (1997).

    Google Scholar 

  4. Ya. Ya. Rushchitskii and S. I. Tsurpal, Waves in Materials with a Microstructure [in Ukrainian], Inst. Mekh. NAN Ukr., Kiev (1998).

    Google Scholar 

  5. S. Flügge (ed.), Encyclopedia of Physics, Vol. VIa I, Mechanics of Solids, I, Springer-Verlag, Berlin-Heidelberg-New York (1973).

    Google Scholar 

  6. E. Janke, F. Emde, and F. Lösch, Tafeln höherer Funktionen, Teubner Verlaggesellschaft, Stuttgart (1960).

    Google Scholar 

  7. J. K. de Feriet, R. Campbell, G. Petiau, and T. Vogel, Functions de la physique mathematique, Centre national de la recherche scientifique, Paris (1957).

    Google Scholar 

  8. J. J. Rushchitsky, “New solitary waves and their interaction in solid mixtures (granular composites),” ZAMM, Special Issue for Abstracts of GAMM-97 Meeting, 53, No. 6, 663-664 (1997).

    Google Scholar 

  9. J. J. Rushchitsky, “Interaction of waves in solid mixtures,” Appl. Mech. Rev., 52, No. 2, 35-74 (1999).

    Google Scholar 

  10. J. J. Rushchitsky, “Nonlinear interaction of elastic solitary waves in materials,” in: Abstracts of the 3rd European Nonlinear Oscillations Conference, Denmark Technical University, Copenhagen (1999), pp. 36-37.

    Google Scholar 

  11. Ya. Ya. Rushchitskii, “Extension of the microstructural theory of two-phase mixtures to composite materials,” Int. Appl. Mech., 36, No. 5, 586-614 (2000).

    Google Scholar 

  12. Ya. Ya. Rushchitskii and E. V. Terletskaya, “Simulation of traveling solitary plane waves,” Int. Appl. Mech., 36, No. 11,1496-1500 (2000).

    Google Scholar 

  13. Ya. Ya. Rushchitskii, “Novel solitary waves in elastic materials: existence and nonlinear interaction,” Int. Appl. Mech.,37, No. 7, 921-928 (2001).

    Google Scholar 

  14. E. T. Whittaker and G. N. Watson, A Course of Modern Analysis. An Introduction to the General Theory of Infinite Processes and of Analytic Functions; with an Account of the Principal Transcendental Functions, 4th ed., Cambridge University Press, Cambridge (1927).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rushchitskii, Y.Y., Cattani, C. & Terletskaya, E.V. The Effect of the Characteristic Dimension of a Microstructural Material and the Trough Length of a Solitary Wave on its Evolution. International Applied Mechanics 39, 197–202 (2003). https://doi.org/10.1023/A:1023913632267

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023913632267

Navigation