Skip to main content
Log in

Mechanisms of Differences in Gating Effects on Short- and Long-Latency Somatosensory Evoked Potentials Relating to Movement

Brain Topography Aims and scope Submit manuscript

Abstract

We investigated the mechanisms underlying the differences in gating effects on short- and long-latency somatosensory evoked potentials (SEPs) relating to movement. SEPs were recorded in normal subjects for 6 different tasks in Experiment 1: Control, Movement, Distraction, Attention, Movement during Distraction and Movement during Attention, and for 4 different tasks in Experiment 2: Control, Passive Movement, Contralateral Movement and Movement Imagery. The amplitudes of short-latency SEPs were significantly reduced by active and passive movement of the stimulated hand, but long-latency SEPs (N140-P200) were significantly enhanced by active movement of the stimulated hand. Attention, Distraction, Contralateral Movement and Movement Imagery did not affect the amplitudes of SEPs. The degree of enhancement of long-latency SEPs by active Movement was greater than that by active movement with Attention or Distraction. Gating effects on long-latency SEPs were different from those on short-latency SEPs. Since this effect was not related to Attention/Distraction, Passive Movement, Movement Imagery or Movement of another site, it is probably due to specific centrifugal effects, which are different from more direct gating effects on short-latency components. This study showed the difference in gating effects on somatosensory perception depending on time periods following stimulation, which may indicate an interaction between motor and somatosensory cortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Abbruzzese, G., Ratto, S., Favale, E. and Abbruzzese, M. Proprioceptive modulation of somatosensory evoked potentials during active or passive finger movements in man. J. Neurol. Neurosurg. Psychiatry., 1981, 44: 942-949.

    PubMed  Google Scholar 

  • Allison, T., McCarthy, G., Wood, C.C., Darcey, T.M., Spencer, D.D. and Williamson, P.D. Human cortical potentials evoked by stimulation of the median nerve. I. Cytoarchitectonic areas generating short-latency activity. J. Neurophysiol., 1989a, 62: 694-710.

    PubMed  Google Scholar 

  • Allison, T., McCarthy, G., Wood, C.C., Williamson, P.D. and Spencer, D.D. Human cortical potentials evoked by stimulation of the median nerve. II. Cytoarchitectonic areas generating long-latency activity. J. Neurophysiol., 1989b, 62:711-722.

    PubMed  Google Scholar 

  • Allison, T., McCarthy, G. and Wood, C.C. The relationship between human long-latency somatosensory evoked potentials recorded from the cortical surface and from the scalp. Electroenceph. Clin. Neurophysiol., 1992, 84: 301-314.

    PubMed  Google Scholar 

  • Bocker, K.B., Forget, R. and Brunia, C.H. The modulation of somatosensory evoked potentials during the foreperiod of a forewarned reaction time task. Electroenceph. Clin. Neurophysiol., 1993, 88: 105-117.

    PubMed  Google Scholar 

  • Broughton, R., Regis, H. and Gastaut, H. Modifications of somaesthesic evoked potentials during bursts of mu rhythm and during fist clenching. Electroenceph. Clin. Neurophysiol., 1965, 18: 720.

    Google Scholar 

  • Cheron, G. and Borenstein, S. Specific gating of the early somatosensory evoked potentials during active movement. Electroenceph. Clin. Neurophysiol., 1987, 67: 537-548.

    PubMed  Google Scholar 

  • Cheron, G. and Borenstein, S. Gating of the early components of the frontal and parietal somatosensory evoked potentials in different sensory-motor interference modalities. Electroenceph. Clin. Neurophysiol., 1991, 80: 522-530.

    PubMed  Google Scholar 

  • Cheron, G. and Borenstein, S. Mental movement simulation affects the N30 frontal component of the somatosensory evoked potential. Electroenceph. Clin. Neurophysiol., 1992, 84: 288-292.

    PubMed  Google Scholar 

  • Cohen, L.G. and Starr, A. Vibration and muscle contraction affect somatosensory evoked potentials. Neurology, 1985, 35: 691-698.

    PubMed  Google Scholar 

  • Coquery, J.M., Coulmance, M. and Leron, M.C. Modifications des potentials evoques corticaux somesthesiques Durant des mouvements actifs et passifs chez l'homme. Electroenceph. Clin. Neurophysiol., 1972, 33: 269-276.

    PubMed  Google Scholar 

  • Desmedt, J.E. and Robertson, D. Differential enhancement of early and late components of the cerebral somatosensory evoked potentials during forced-paced cognitive tasks in man. J. Physiol., 1977, 271: 761-782.

    PubMed  Google Scholar 

  • Desmedt, J.E. and Tomberg, C. Mapping early somatosensory evoked potentials in selective attention: critical evaluation of control conditions used for titrating by difference the cognitive P30, P40, P100 and N140. Electroenceph. Clin. Neurophysiol., 1989, 74: 321-346.

    PubMed  Google Scholar 

  • Forss, N. and Jousmaki, V. Sensorimotor integration in human primary and secondary somatosensory cortices. Brain Res., 1998, 781: 259-267.

    PubMed  Google Scholar 

  • Garcia-Larrea, L., Lukaszewicz, A.C. and Mauguiere, F. Somatosensory responses during selective spatial attention: The N120-to-N140 transition. Psychophysiology, 1995, 32: 526-537.

    PubMed  Google Scholar 

  • Giblin, D.R. Somatosensory evoked potentials in healthy subjects and in patients with lesions of the nervous system. Ann. NY Acad. Sci., 1964, 112: 93-142.

    PubMed  Google Scholar 

  • Hari, R., Reinikainen, K., Kaukoranta, E., Hamalainen, M., Ilmoniemi, R., Penttinen, A., Salminen, J. and Teszner, D. Somatosensory evoked cerebral magnetic fields from SI and SII in man. Electroenceph. Clin. Neurophysiol., 1984, 57: 254-263.

    PubMed  Google Scholar 

  • Hari, R., Karhu, J., Hamalainen, M., Knuutila, J., Salonen, O., Sams, M. and Vilkman, V. Functional organization of the human first and second somatosensory cortices: a neuromagnetic study. Eur. J. Neurosci., 1993, 5: 724-734.

    PubMed  Google Scholar 

  • Hazemann, P., Audin, G. and Lille, F. Effect of voluntary self-paced movements upon auditory and somatosensory evoked potentials in man. Electroenceph. Clin. Neurophysiol., 1975, 39: 247-254.

    PubMed  Google Scholar 

  • Hoshiyama, M. and Sheean, G. Changes of somatosensory evoked potentials preceding rapid voluntary movement in Go/No-go choice reaction time task. Brain Res. Cogn. Brain Res., 1998, 7: 137-142.

    PubMed  Google Scholar 

  • Huttunen, J., Wikstrom, H., Korvenoja, A., Seppalainen, A.M., Aronen, H. and Ilmoniemi, R.J. Significance of the second somatosensory cortex in sensorimotor integration: enhancement of sensory responses during finger movements. Neuroreport, 1996, 7: 1009-1012.

    PubMed  Google Scholar 

  • Inoue, K., Yamashita, T., Harada, T. and Nakamura, S. Role of human SII cortices in sensorimotor integration. Clin. Neurophysiol., 2002, 113: 1573-1578.

    PubMed  Google Scholar 

  • Jones, S.J. An "interference" approach to the study of somatosensory evoked potentials in man. Electroenceph. Clin. Neurophysiol., 1981, 52: 517-530.

    PubMed  Google Scholar 

  • Jones, S.J., Halonen, J.P. and Shawkat, F. Centrifugal and centripetal mechanisms involved in the "gating" of cortical SEPs during movement. Electroenceph. Clin. Neurophysiol., 1989, 74: 36-45.

    PubMed  Google Scholar 

  • Josiassen, R.C., Shagass, C., Roemer, R.A., Ercegovac, D.V. and Straumanis, J.J. Somatosensory evoked potential changes with a selective attention task. Psychophysiology, 1982, 19: 146-159.

    PubMed  Google Scholar 

  • Kakigi, R. Ipsilateral and contralateral SEP components following median nerve stimulation: effects of interfering stimuli applied to the contralateral hand. Electroenceph. Clin. Neurophysiol., 1986, 64: 246-259.

    PubMed  Google Scholar 

  • Kakigi, R. Somatosensory evoked magnetic fields following median nerve stimulation. Neurosci. Res., 1994, 20: 165-174.

    PubMed  Google Scholar 

  • Kakigi, R., Koyama, S., Hoshiyama, M., Watanabe, S., Shimojo, M. and Kitamura, Y. Gating of somatosensory evoked responses during active finger movements: magnetoencephalographic studies. J. Neurol. Sci., 1995, 128: 195-204.

    PubMed  Google Scholar 

  • Kawamura, T., Nakasato, N., Seki, K., Kanno, A., Fujita, S., Fujiwara, S. and Yoshimoto, T. Neuromagnetic evidence of pre-and post-central cortical sources of somatosensory evoked responses. Electroenceph. Clin. Neurophysiol., 1996, 100: 44-50.

    PubMed  Google Scholar 

  • Lee, R.G. and White, D.G. Modification of the human somatosensory evoked response during voluntary movement. Electroenceph. Clin. Neurophysiol., 1974, 36: 53-62.

    PubMed  Google Scholar 

  • Lin, Y.Y., Simoes, C., Forss, N. and Hari, R. Differential effects of muscle contraction from various body parts on neuromagnetic somatosensory responses. Neuroimage, 2000, 11: 334-340.

    PubMed  Google Scholar 

  • Maeda, K., Kakigi, R., Hoshiyama, M. and Koyama, S. Topography of the secondary somatosensory cortex in humans: a magnetoencephalographic study. Neuroreport, 1999, 10: 301-306.

    PubMed  Google Scholar 

  • Michie, P.T., Bearpark, H.M., Crawford, J.M. and Glue, L.C. The effects of spatial selective attention on the somatosensory event-related potential. Psychophysiology, 1987, 24: 449-463.

    PubMed  Google Scholar 

  • Nishihira, Y., Araki, H. and Ishihara, A. Attenuation of somatosensory evoked potentials immediately following rapid reaction movement. Electromyogr. Clin. Neurophysiol., 1991, 31: 15-20.

    PubMed  Google Scholar 

  • Papakostopoulos, D., Cooper, R. and Crow, H.J. Inhibition of cortical evoked potentials and sensation by self-initiated movement in man. Nature, 1975, 258: 321-324.

    PubMed  Google Scholar 

  • Reisin, R.C., Goodin, D.S., Aminoff, M.J. and Mantle, M.M. Effects of different sensory inputs on the median-derived somatosensory evoked potential. Muscle Nerve, 1989, 12: 598-603.

    PubMed  Google Scholar 

  • Ridley, R.M. and Ettlinger, G. Impaired tactile learning and retention after removals of the second somatic sensory projection cortex (SII) in the monkey. Brain Res., 1976, 109: 656-660.

    PubMed  Google Scholar 

  • Rushton, D.N., Rothwell, J.C. and Craggs, M.D. Gating of somatosensory evoked potentials during different kinds of movement in man. Brain, 1981, 104: 465-491.

    PubMed  Google Scholar 

  • Seyal, M., Ortstadt, J.L., Kraft, L.W. and Gabor, A.J. Effect of movement on human spinal and subcortical somatosensory evoked potentials. Neurology, 1987, 37: 650-655.

    PubMed  Google Scholar 

  • Shimazu, H., Kaji, R., Murase, N., Kohara, N., Ikeda, A., Shibasaki, H., Kimura, J. and Rothwell, J.C. Pre-movement gating of short-latency somatosensory evoked potentials. Neuroreport, 1999, 10: 2457-2460.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakata, H., Inui, K., Wasaka, T. et al. Mechanisms of Differences in Gating Effects on Short- and Long-Latency Somatosensory Evoked Potentials Relating to Movement. Brain Topogr 15, 211–222 (2003). https://doi.org/10.1023/A:1023908707851

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023908707851

Navigation