Skip to main content
Log in

Thermal evolution of ferromagnetic metallic glasses

  • Published:
Journal of Thermal Analysis and Calorimetry Aims and scope Submit manuscript

Abstract

A traditional TG apparatus was modified by placing two permanent magnets producing a controlled magnetic field (TG(M): Magneto Thermogravimetry). This technique proved to be useful to study both structural relaxation and crystallisation of ferromagnetic metallic glasses. Results obtained for the amorphous alloys Fe40Ni40P14B6 and Fe62.5Co6Ni7.5Zr6Nb2Cu1B15, are reported in this paper. Structural relaxation can be evaluated by measuring changes in Curie temperature induced by thermal treatments. Crystallisation in TG(M) is detected through a change in the measured apparent mass (difference between the sample mass and magnetic force driving it upward). These results were confirmed by DSC analysis. Whether the obtained crystalline phase is ferromagnetic, it can be identified through its Curie temperature, measured by TG(M). In fact the value of 770°C measured as Curie temperature of crystallised Fe62.5Co6Ni7.5Zr6Nb2Cu1B15led to conclude that the only ferromagnetic crystalline phase is a-Fe. These hypothesis was confirmed by XRD analysis, showing that the first crystallisation yields to a-Fe nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Vazquez and H. Hernando, J. Phys. D, 29 (1996) 271.

    Article  Google Scholar 

  2. E. Olsen, Applied Magnetism, Philips Technical Library, Eindhoven (The Netherlands) 1966.

    Google Scholar 

  3. V. Iannotti and L. Lanotte, Phil. Mag. B, 80 (2000) 1903.

    Article  CAS  Google Scholar 

  4. Les Amorphes Metalliques, Les Editions de Physique Editor, Proceeding of Ecole d'Hiver-Aussois, 1983.

  5. R. Hasegawa, J. Magn. Mater., 100 (1991) 1.

    Article  CAS  Google Scholar 

  6. Z. Kaczkowski, L. Malinski and M. Muller, IEEE Trans. Magn., 31 (1995) 155.

    Article  Google Scholar 

  7. L. Lanotte, V. Iannotti and M. Muller, J. Appl. Electromagn. Mech., 10 (1999) 215.

    Google Scholar 

  8. L. Lanotte, G. Ausanio, M. Carbucicchio, V. Iannotti and M. Muller, J. Magn. and Magn. Mat., 215-216 (2000) 276.

    Article  CAS  Google Scholar 

  9. J. J. Suñol, N. Clavaguera and M. T. Mora, J. Therm. Anal. Cal., 52 (1998) 853.

    Article  Google Scholar 

  10. D. M. Lin, H. S. Wang, M. L. Lin and Y. C. Wu, J. Therm. Anal. Cal., 58 (1999) 347.

    Article  CAS  Google Scholar 

  11. D. M. Lin, M. L. Lin, M. H. Lin, Y. C. Wu, H. S. Wang and Y. J. Chen, J. Therm. Anal. Cal., 58 (1999) 355.

    Article  CAS  Google Scholar 

  12. F. Branda, G. Luciani and A. Costantini, J. Therm. Anal. Cal., 61 (2000) 889.

    Article  CAS  Google Scholar 

  13. J. J. Suñol, M. T. Clavaguera-Mora and N. Clavaguera, J. Therm. Anal. Cal., 70 (2002) 173.

    Article  Google Scholar 

  14. G. Ausanio, V. Iannotti, C. Luponio and L. Lanotte, Mat. Sci. Tech., 17 (2001) 1525.

    CAS  Google Scholar 

  15. P. Allia, M. Coisson, P. Tiberto, F. Vinai and L. Lanotte, J. Magn. Magn. Mater., 215-216 (2000) 346.

    Article  CAS  Google Scholar 

  16. L. Lanotte, G. Ausanio, V. Iannotti, F. Branda, G. Luciani, A. Stantero, F. Vinai and M. Carbucicchio, Nanostructure Materials, 11 (1999) 805.

    Article  CAS  Google Scholar 

  17. M. E. Brown, Thermal Analysis — Techniques and Applications, Chapman and Hall, London 1988.

    Google Scholar 

  18. P. Scardi, L. Lutteroti and P. Maistrelli, Powder Diffraction, 9 (1994) 180.

    CAS  Google Scholar 

  19. M. Leoni, P. Scardi and J. I. Langford, ibid. 13 (1998) 210.

    CAS  Google Scholar 

  20. P. H. Gaskell, J. Non-Cryst. Solids, 32 (1979) 207.

    Article  CAS  Google Scholar 

  21. H. Herman and W. Kreher, J. Phys. F: Met. Phys., 18 (1988) 641.

    Article  Google Scholar 

  22. C. D. Graham Jr. and T. Egami, J. Magn. Magn. Mat., 15-18 (1980) 1325.

    Article  CAS  Google Scholar 

  23. A. L. Greer and J. A. Leak, J. Non-Cryst. Solids, 33 (1979) 291.

    Article  CAS  Google Scholar 

  24. G. Ausanio, V. Iannotti, F. Miletto Granozio, C. Meneghini, M. Minicucci, F. Ricci and L. Lanotte, J. Magn. Magn. Mat., 242-245 (2002) 904.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Luciani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luciani, G., Costantini, A., Branda, F. et al. Thermal evolution of ferromagnetic metallic glasses. Journal of Thermal Analysis and Calorimetry 72, 105–111 (2003). https://doi.org/10.1023/A:1023907417059

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023907417059

Navigation