Skip to main content
Log in

Probe Diagnostics of Meteotron Flame

  • Published:
Combustion, Explosion and Shock Waves Aims and scope

Abstract

A movable double probe was used to study the large-scale naked flame of the meteotron installation. The paper gives a description of the installation and experimental technique used and the data obtained. The electron temperature and the degree of ionization of the flame plasma are obtained from current–voltage characteristics. The operation mode of the probe–flame plasma system is determined. The possibility of positive surface ionization of the potassium atoms adsorbed on soot particles and in the flame volume is indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. N. G. Konopasov and V. N. Kunin, “Meteotron,” USSR Inventor's Certificate No. 938831, Appl. 04.15.80, No. 291469/30-15; Byul. Izobr., No. 24, A 01 15/00 (1982).

  2. A. A. Kuznetsov, “Thermal and electrophysical properties of a powerful thermal jet,” Candidates' Dissertation in Phys.-Math. Sci., Odessa State Univ., Odessa (1988).

    Google Scholar 

  3. A. A. Kuznetsov and O. D. Bukharova, “Dynamics of macroprocesses in a flame and heated jet,” Combust. Expl. Shock Waves, 37, No. 1, 30–35 (2001).

    Google Scholar 

  4. A. A. Kuznetsov and N. G. Konopasov, “Installation for generating powerful vertical heated jets,” in: Applied Problems of Fluid Mechanics, Proc. X Int. Sci. Conf., Sevastopol'; Tech. Univ., Sevastopol' (2001), pp. 116–122.

  5. R. H. Huddlestone and S. L. Leonard (eds.), Plasma Diagnostic Techniques, Academic Press, New York (1965).

    Google Scholar 

  6. A. A. Buzukov, B. P. Timoshenko, and N. Kh. Kopyt, “X-ray flash diagnostics of the internal structure of polydisperse condensed-phase flows,” in: Abstracts of the IIIrd All-Union Conf. on the Physics of Low-Temperature Plasmas with a Dispersed Condensed Phase, Odessa State Univ., Odessa (1988), p. 96.

    Google Scholar 

  7. A. B. Vatazhin, I. I. Il'yushenkova, and A. M. Rushailo, “Electrostatic method for the diagnostics of a charged dispersed phase,” ibid., p. 64.

    Google Scholar 

  8. G. S. Aravin, P. A. Vlasov, Yu. K. Karasevich, et al., “Probe diagnostics of low-temperature plasmas with a dispersed condensed phase,” ibid., p. 59.

    Google Scholar 

  9. M. K. Gladyshev and V. A. Gorelov, “Probe measurements in a gas flow containing an admixture of macroscopic particles,” Teplofiz. Vys. Temp., 14, No. 4, 888–890 (1976).

    Google Scholar 

  10. I. M. Podgornyi, Lectures on Plasma Diagnostics [in Russian], Atomizdat, Moscow (1968).

    Google Scholar 

  11. L. S. Pavlova, V. M. Polyakov, and V. D. Rubashevskii, “Determination of low-temperature plasma parameters from ultrahigh frequency radiation,” in: Problems of the Physics of Low-Temperature Plasmas [in Russian], Nauka Tekhnika, Minsk (1971).

    Google Scholar 

  12. Yu. A. Ivanov, Yu. A. Lelayerev, and L. S. Polak, “Probe measurements in microwave plasmas,” Zh. Tekh. Fiz., 46, No. 7, 1459–1464 (1976).

    Google Scholar 

  13. N. N. Ivanov and A. N. Ivanov, “Devices and installations of contact diagnostics and their use in studies of high-temperature two-phase flows,” Combust. Expl. Shock Waves, 27, No. 6, 87–101 (1991).

    Google Scholar 

  14. I. Langmuir, Collected Works of Irving Langmuir, G. Suits (ed.), Vols. 4 and 5, Pergamon, Long Island City—New York (1961).

    Google Scholar 

  15. L. Loeb, Static Electrification, Springer, Berlin (1957).

    Google Scholar 

  16. V. P. Bogoslovskii, V. V. Zaichikov, and I. B. Samoilov, “Probe measurements of ionization in a flame,” Combust. Expl. Shock Waves, 10, No. 5, 6260–630 (1974).

    Google Scholar 

  17. Maxime G. Kaufman, “Force field attraction of object in space,” JEEE Int. Convent Rec., 14, No. 10, 100–111 (1966).

    Google Scholar 

  18. S. Sabaro, “Sources and effects of electrical charge accumulation and dissipation on spacecraft,” JEEE Trans. Electromagnetic Compatability, Vol. EMC-7, December (1965), pp. 437–444.

    Google Scholar 

  19. A. A. Boumans, “Streaming currents in turbulent ows and metal capillaries,” Physica, 23, 1007–1026 (1957).

    Google Scholar 

  20. Omesh Sahni, “The calor-electric effect in atmospheric flame plasmas at thermodynamic equilibrium,” Int. J. Electron., 25, No. 6, 547–556 (1969).

    Google Scholar 

  21. K. N. Ul'yanov, “Theory of electrical probes in dense plasmas,” Zh. Tekh. Fiz., 40, No. 4, 790–798 (1970).

    Google Scholar 

  22. J. U. Cohen, “Asymptotic theory of electrostatic probes in a slightly ionized collision dominated gas,” Phys. Fluids, 6, 1492 (1963).

    Google Scholar 

  23. V. N. Mikhailov, “Conditions near the electrode in a plasma with an alkali admixture,” Prkl. Mekh. Tekh. Fiz., No. 4. 489–496 (1971).

  24. R. A. Johnson and P. C. T. de Boer, “Theory of ion boundary layers,” AIAA J., 10, No. 5, 664–670 (1972).

    Google Scholar 

  25. L. G. Loitsyanskii, Mechanics of Liquids and Gases, Pergamon Press, Oxford-New York (1966).

    Google Scholar 

  26. B. Ya. Moizhes and G. G. Pikus, “On the theory of a plasma thermal cell,” Fiz. Tverd. Tela, 2, No. 4, 756–774 (1960).

    Google Scholar 

  27. R. M. Clements and P. R. Smy, “Electrostatic-probe studies in a flame plasmas,” J. Appl. Phys., 40, No. 11, 4553–4558 (1969).

    Google Scholar 

  28. P. R. Smy, “Application of Langmuir probes for research of high pressure plasma,” Adv. Phys, 25, 517 (1976).

    Google Scholar 

  29. R. Clements, “Plasma diagnostics with electric probes,” J. Vac. Sci. Technol., 15, No. 2, 193–198 (1978).

    Google Scholar 

  30. F. G. Baksht, N. K. Mitrofanov, A. B. Rybakov, and M. Shkol'nik, “Probe diagnostics of strongly ionized plasmas of noble gases at atmospheric pressure,” Zh. Tekh. Fiz., 68, No. 6, 51–55 (1998).

    Google Scholar 

  31. E. O. Johnson and I. Malter, “A floating double probe method for measurements in gas discharges,” Phys. Rev., 80, No. 1, 58–68 (1950).

    Google Scholar 

  32. D. Bradley and K. J. Matthews, “Double spherical electrostatic probe continuum theory and electron temperature measurement,” Phys. Fluids, 10, No. 6, 1336–1341 (1967).

    Google Scholar 

  33. J. D. Swift, “Effects of finite probe size in the determination of electron energy distribution functions,” Proc. Phys. Soc., 79, No. 4, 697–701 (1962).

    Google Scholar 

  34. I. A. Vasil'eva, “Effect of the form of the electron energy distribution function on current-voltage characteristic of double probes and zero current potential in plasmas,” Teplofiz. Vys. Temp., 12, No. 6, 1149–1154 (1974).

    Google Scholar 

  35. J. Bito, I. Bolla, and K. Antal, “Aktiv plazmadiagnosztikai. Vizsga'laty mo'dszerec,” Müuszaki Tudomany, 51, Nos. 1-2, 27–60 (1976).

    Google Scholar 

  36. P. M. Chung, L. Talbot, and K. J. Touryan, Electric Probes in Stationary and Flowing Plasmas: Theory and Applications, Springer, New York (1975).

    Google Scholar 

  37. S. M. Lam, “General theory of weakly ionized gases,” Raketn. Tekh. Kosmavt., 2, No. 2, 43–51 (1964).

    Google Scholar 

  38. N. I. Ashin I. A. Vasil'eva, and A. P. Nefedov, “Effect of Langmuir probe temperature on temperature measurements,” in: Problems of the Physics of Low-Temperature Plasmas [in Russian], Nauka Tekhnika, Minsk (1970), pp. 33–36.

    Google Scholar 

  39. V. I. Vishnyakov and S. K. Protas, “Effect of electrode temperature on probe measurements,” in: Abstracts of the IIIrd All-Union Conf. on the Physics of Low-Temperature Plasmas with a Dispersed Condensed Phase, Odessa State Univ., Odessa (1988), p. 66.

    Google Scholar 

  40. A. A. Kuznetsov and N. G. Konopasov, “Installation for generating a wet jet,” in: Applied Problems of Fluid Mechanics, Proc. X Int. Sci. Conf., Sevastopol' Tech. Univ., Sevastopol' (2001), pp. 114–116.

  41. B. G. D'yachkov, E. A. Patskov, and I. Ya. Polonskii, “Calculation of current-voltage characteristics of gas burners,” Combust. Expl. Shock Waves, 17, No. 2, 148–152 (1981).

    Google Scholar 

  42. Yu. S. Ivashchenko, Yu. G. Korobchenko, and T. S. Bondarenko, “Electron temperature of a hydrocarbon flame,” Combust. Expl. Shock Waves, 11, No. 6, 705–706 (1975).

    Google Scholar 

  43. V. I. Botova, B. S. Ospanov, and B. S. Fialkov, “Identification and study of active-center and negative-ion distributions in a flat diffusive hydrocarbon flame,” Combust. Expl. Shock Waves, 25, No. 3, 303–304 (1989).

    Google Scholar 

  44. Kalkot, “Ion formation in flame,” in: Problems of Rocket Technique (collected scientific papers) [Russian translation], No. 3, Izd. Inostr. Lit., Moscow (1958), pp. 78–96.

    Google Scholar 

  45. V. N. Gruzdev, M. D. Tavger, and A. V. Talantov, “Autoignition of kerosene in a stream of nonequilibrium combustion products,” Combust. Expl. Shock Waves, 15, No. 4, 84–88 (1979).

    Google Scholar 

  46. B. V. Losikov (ed.), Oil Products [in Russian], Khimiya, Moscow (1966).

    Google Scholar 

  47. V. N. Zrelov and V. A. Piskunov, Jets and Fuel [in Russian], Mashinostroenie, Moscow (1968).

    Google Scholar 

  48. A. A. Kuznetsov, N. G. Konopasov, V. V. Dorozhkov, and L. V. Furov, Diagnostics of meteotron flame, in: Applied Problems of Fluid Mechanics, Proc. VIII Int. Sci. Conf., Sevastopol' Tech. Univ., Sevastopol' (1999), pp. 28–30.

  49. A. A. Kuznetsov and N. G. Konopasov, “On the discussion of results of probe diagnostics of flames,” in: Applied Problems of Mathematics and Mechanics, Proc. XI Int. Sci. Conf., Sevastopol' Tech. Univ., Sevastopol' (2002), pp. 16–20.

  50. É. Ya. Zandberg and N. I. Ionov, “Surface ionization,” Usp. Fiz. Nauk, LXVII, No. 4, 581–623 (1959).

    Google Scholar 

  51. É. Ya. Zandberg and N. I. Ionov, Surface Ionization [in Russian], Nauka, Moscow (1969).

    Google Scholar 

  52. B. Lweis and G. Elbe, Combustion, Flames, and Explosions in Gases, Academic Press, New York (1961).

    Google Scholar 

  53. A. G. Gaydon and H. G. Wolfhard, Flames: Their Structure, Radiation, and Temperature, Wiley, New York (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuznetsov, A.A. Probe Diagnostics of Meteotron Flame. Combustion, Explosion, and Shock Waves 39, 275–284 (2003). https://doi.org/10.1023/A:1023888018618

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023888018618

Navigation