Skip to main content
Log in

Superconductivity and the Chemical Bond

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Experimental evidence suggests the operation of electron rules based on bond ordering of doped radical CuO bonds (BO) and lattice pressure (LP) in cuprate superconductivity. Ideas are developed for understanding the crystal chemical principles involved in these BO. They are then extended to materials on the basis of other electronegative elements. For cuprates, a quantitative T c formalism is based on radical bond or hole concentration in the CuO2 plane (hp) per O in the extended planar system including the apical O (radical formalism or RF). The deleterious effect of the apical O is ascribed to bond resonance with the CuO2 plane. A range in the critical hole concentration exists for optimal T c depending on LP. Accordingly the small Sr analogs tend to be limited at smaller hole concentrations h p = 1/6, while the Ba analogs can optimize at 1/3. Selected experimental evidence is used to construct plausible BO patterns. Superconductivity is related to strings of local pairs of trijugate half bonds. Electronic freezing can occur in domain walls of alternating single holes, e.g., in La2CuO4 type materials at h p = 1/8. Predictions for this BO model have been corroborated by details in the transistor doping of CaCuO2 and C 60 as a universal sequence of T c development with hole doping becomes apparent for both cases. Hallmarks include linear portions up to an optimal BO (RF slopes), which extrapolate to the origin, and a “sharp” peak with another linear region thereafter. They further include T c onset at a critical BO, where an adverse BO is cooperatively transformed to a beneficial one with a slope related to RF by rational numbers. Tendencies to electronic freezing [e.g., h p = 1/8 in CaCuO2 and an analogous one in C 60] occur near the optimal BO because of increasing LP. Some of these features occur at identical numbers of atoms per hole for both systems and others are related numerically. T c–hole slopes can supply hints for the mechanisms of BO transformations. The universality of this behavior suggests a common origin for all high T c materials in pairs of doped covalent bonds of radical character and a “musical” BO phenomenology with respect to levels and limits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Simon, Angew.Chem. Int. Ed. 36, 1788(1997).

    Google Scholar 

  2. R. Ricardo da Silva J. H. S. Torres, and Y. Kopelevich, Phys. Rev. Lett. 87, 147001(2001).

    Google Scholar 

  3. J. H. Schoen, C., Kloc, and B. Batlogg, Nature 408, 549(2000).

    Google Scholar 

  4. J. Nagamatsu, N. Nakagawa, T. Muranaka, Y. Zenitani, and J. Akimatsu, Nature 410, 63(2001).

    Google Scholar 

  5. H. Oesterreicher, J. Solid State Chem 158, 139(2001).

    Google Scholar 

  6. D. Ko and H. Oesterreicher, Physica C 277, 95(1997).

    Google Scholar 

  7. H. Oesterreicher, J. Low Temp. Physics 177, 993(1999).

    Google Scholar 

  8. H. Oesterreicher, J. Alloys Compd. 336, 138(2002).

    Google Scholar 

  9. H. Oesterreicher, J. Supercond. 14, 703(2001).

    Google Scholar 

  10. H. Oesterreicher unpublished.

  11. J. H. Schoen, M. Dorget F. C. Beuran, X. Z. Xu, E. Arushanov M. Lagues and C. Deville Cavellin Science 293, 2430(2001).

    Google Scholar 

  12. Y. J. Uemura, Phys. Rev. Lett. 62, 2317(1989).

    Google Scholar 

  13. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, and Y. Xu, Phys. Rev., 38, 8893(1988).

    Google Scholar 

  14. M. R. Presland and J. L. Tallon, Physica C 176, 95(1991).

    Google Scholar 

  15. J. L. Tallon, Phys. Rev. B 51, 12911(1995).

    Google Scholar 

  16. B. O. Wells, Science 277, 1067(1997).

    Google Scholar 

  17. E. S. Bozin, G. Kwei H. Takagi and J. S. L. Billinge, Phys. Rev. Lett. 84, 5856(2000).

    Google Scholar 

  18. T. Egami, Y. Petrov, and D. Louca, J. Supercond. 13, 709(2000).

    Google Scholar 

  19. M. W. Pieper, F. Wiekhorst, and T. Wolf, Phys. Rev. B 62, 1392(2000).

    Google Scholar 

  20. J. M. Tranquada, Phys Rev. B 50, 6340(1994).

    Google Scholar 

  21. J. Choy, S. Kwon, and G. Park, Science 280, 1589(1998).

    Google Scholar 

  22. L. T. Romano, M. G. Smith, H. Oesterreicher and R. D. Taylor, Phys. Rev. B 45, 8042(1992).

    Google Scholar 

  23. A. R. Bishop, Curr. Opin. Solid State Mater. Sci. 2, 244(1997).

    Google Scholar 

  24. J. B. Goodenough and J. S. Zhou, Struct. Bonding 98, 17(2001).

    Google Scholar 

  25. A. V. Balatsky and Z. X. Shen, Science 284, 1137(1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oesterreicher, H. Superconductivity and the Chemical Bond. Journal of Superconductivity 16, 561–571 (2003). https://doi.org/10.1023/A:1023885424125

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023885424125

Navigation