Skip to main content
Log in

Nuclear Transport by Laser-Induced Pressure Transients

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. Control of the transport of molecules into the nucleus represents a key regulatory mechanism for differentiation, transformation, and signal transduction. Permeabilization of the nuclear envelope by physical methods can have applications in gene therapy. Laser-induced pressure transients can produce temporary aqueous pores analogous to those produced by electroporation and that the cells can survive this procedure. In this study, we examine the role of the pressure transients in creating similar pores in the nuclear envelope.

Methods. The target human peripheral blood mononuclear cells in a 62 μM 72 kDa fluoresceinated dextran solution were exposed to the pressure transients generated by laser ablation. An in vitro fluorescence confocal microscope was used to visualize and quantify the fluoresceinated dextran in the cytoplasmic and nuclear compartments.

Results. In contrast to electroporation, the pressure transients could deliver 72 kDa fluoresceinated dextrans, which are normally excluded by the nucleus, across the nuclear envelope into the nucleus. In addition to creating pores in the plasma membrane, temporary pores were also created in the nuclear envelope following exposure to pressure transients.

Conclusion. The production of temporary nuclear pores could provide a unique resource for drug-delivery and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Peters. Nuclear envelope permeability measured by fluorescence microphotolysis of single liver cell nuclei. J. Biol. Chem. 258:11427–11429 (1983).

    PubMed  Google Scholar 

  2. R. Peters, I. Lang, M. Scholz, B. Schulz, and F. Kayne. Fluorescence microphotolysis to measure nucleocytoplasmic transport in vivo and in vitro. Biochem. Soc. Trans. 14:821–822 (1986).

    PubMed  Google Scholar 

  3. I. Lang, M. Scholz, and R. Peters. Molecular mobility of nucleocytoplasmic flux in hepatoma cells. J. Cell Biol. 102:1183–1190 (1986).

    PubMed  Google Scholar 

  4. R. Peters. Nucleo-cytoplasmic flux and intracellular mobility in single hepatocytes measured by fluorescence microphotolysis. EMBO J. 3:1831–1836 (1984).

    PubMed  Google Scholar 

  5. B. Schulz and R. Peters. Nucleocytoplasmic protein traffic in single mammalian cells studied by fluorescence microphotolysis. Biochim. Biophys. Acta 930:419–431 (1987).

    PubMed  Google Scholar 

  6. M. Scholz, C. Gross-Johannböcke, and R. Peters. Measurement of nucleo-cytoplasmic transport by fluorescence microphotolysis and laser scanning microscopy. Cell Biol. Int. Rep. 12:709–727 (1988).

    PubMed  Google Scholar 

  7. S. Lee, T. Anderson, H. Zhang, T. J. Flotte, and A. G. Doukas. Alteration of cell membrane by stress waves in vitro. Ultrasound Med. Biol. 22:1285–1293 (1996).

    PubMed  Google Scholar 

  8. L. M. Lyamshev. Optoacoustic sources of sound. Sov. Phys. Usp. 24:977–995 (1981).

    Google Scholar 

  9. S. E. Mulholland, S. Lee, D. J. McAuliffe, and A. G. Doukas. Cell loading with laser-generated stress waves: the role of the stress gradient. Pharm. Res. 16:514–518 (1999).

    PubMed  Google Scholar 

  10. Y. Yashima, D. J. McAuliffe, S. L. Jacques, and T. J. Flotte. Laser-induced photoacoustic injury of skin: effect of inertial confinement. Lasers Surg. Med. 11:62–68 (1991).

    PubMed  Google Scholar 

  11. A. G. Doukas, D. J. McAuliffe, and T. J. Flotte. Biological effects of laser-induced shock waves: structural and functional cell damage in vitro. Ultrasound Med. Biol. 19:137–146 (1993).

    PubMed  Google Scholar 

  12. S. Lee, D. J. McAuliffe, T. J. Flotte, N. Kollias, and A. G. Doukas. Photomechanical transdermal delivery: The effect of laser confinement. Lasers Surg. Med. 28:344–347 (2001).

    PubMed  Google Scholar 

  13. C. R. Phipps Jr., T. P. Turner, R. F. Harrison, G. W. York, W. Z. Osborne, G. K. Anderson, X. F. Corlis, L. C. Haynes, H. S. Steele, K. C. Spicochi, and T. R. King. Impulse coupling targets in vacuum by KrF, HF, and CO2 single pulse laser. J. Appl. Phys. 64:1083–1096 (1988).

    Google Scholar 

  14. S. A. Glantz. Primer of Biostatistics, 3rd edition, McGraw-Hill, New York, 1992.

    Google Scholar 

  15. J. Liu, T. N. Lewis, and M. R. Prausnitz. Non-invasive assessment and control of ultrasound-mediated membrane permeabilization. Pharm. Res. 15:918–924 (1998).

    PubMed  Google Scholar 

  16. M. Delius and G. Adams. Shock wave permealization with ribosome inactivating proteins: a new approach to tumor therapy. Cancer Res. 59:5227–5232 (1999).

    PubMed  Google Scholar 

  17. M. Delius, F. Ueberle, and S. Gambihler. Acoustic energy determines haemoglobin release from erythrocytes by extracorporeal shock waves in vitro. Ultrasound Med. Biol. 21:707–710 (1995).

    PubMed  Google Scholar 

  18. S. Gambihler, M. Delius, and J. W. Ellwart. Permeabilization of the plasma-membrane of L1210 mouse leukemia cells using lithotripter shock-waves. J. Membr. Biol. 141:267–275 (1994).

    PubMed  Google Scholar 

  19. U. Lauer, E. Burgelt, Z. Squire, K. Messmer, P. H. Hofschneider, M. Gregor, and M. Delius. Shock wave permeabilization as a new gene transfer method. Gene Ther. 4:710–715 (1997).

    PubMed  Google Scholar 

  20. Y. Yashima, D. J. McAuliffe, and T. J. Flotte. Cell selectivity to laser-induced photoacoustic injury of skin. Lasers Surg. Med. 10:280–283 (1990).

    PubMed  Google Scholar 

  21. B. J. Wong, M. R. Dickinson, and M. W. Berns. and J. Neev. Identification of photoacoustic transients during pulsed laser ablation of the human temporal bone: an experimental model. J. Clin. Laser Med. Surg. 14:385–392 (1996).

    PubMed  Google Scholar 

  22. S. Lee, D. J. McAuliffe, H. Zhang, Z. Xu, J. Taitelbaum, T. J. Flotte, and A. G. Doukas. Stress-wave-induced membrane permeation of red blood cells is facilitated by aquaporins. Ultrasound Med. Biol. 23:1089–1094 (1997).

    PubMed  Google Scholar 

  23. J. S. Soughayer, T. Krasieva, S. C. Jacobson, J. M. Ramsey, B. J. Tromberg, and N. L. Allbritton. Characterization of cellular optoporation with distance. Anal. Chem. 72:1342–1347 (2000).

    PubMed  Google Scholar 

  24. M. Bier, S. M. Hammer, D. J. Canaday, and R. C. Lee. Kinetics of sealing for transient electropores in isolated mammalian skeletal muscle cells. Bioelectromagnetics 20:194–201 (1999).

    PubMed  Google Scholar 

  25. D. C. Chang and T. S. Reese. Changes in membrane structure induced by electroporation as revealed by rapid-freezing electron microscopy. Biophys. J. 58:1–12 (1990).

    PubMed  Google Scholar 

  26. S. Y. Ho and G. S. Mittal. Electroporation of cell membranes: a review. Crit. Rev. Biotechnol. 16:349–362 (1996).

    PubMed  Google Scholar 

  27. A. Coonrod, F. Q. Li, and M. Horwitz. On the mechanism of DNA transfection: efficient gene transfer without viruses. Gene Ther. 4:1313–1321 (1997).

    PubMed  Google Scholar 

  28. D. C. Lamb, J. Tribble, A. G. Doukas, T. J. Flotte, R. H. Ossoff, and L. Reinisch. Custom designed acoustic pulses. J. Biomed. Optics 4:217–223 (1999).

    Google Scholar 

  29. M. Delius, F. Ueberle, and W. Eisenmenger. Extracorporeal shock waves act by shock wave-gas bubble interaction. Ultrasound Med. Biol. 24:1055–1059 (1998).

    PubMed  Google Scholar 

  30. R. C. Mulligan. The basic science of gene therapy. Science 260:926–932 (1993).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Flotte.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, TY.D., McAuliffe, D.J., Michaud, N. et al. Nuclear Transport by Laser-Induced Pressure Transients. Pharm Res 20, 879–883 (2003). https://doi.org/10.1023/A:1023835219041

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023835219041

Navigation