Skip to main content
Log in

Knight Shift Data and Superconducting T c Modeling Based on an Effective Hole Model

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

The superconducting T c of cuprates have been modeled on a linear scaling with hole concentration per CuO2 plane and a deleterious influence of bond resonance with the apical system (effective hole formalism). In cases where distribution between various hole reservoirs is not trivial, Knight shift can provide actual hole concentrations. It is shown here that when Knight shift data are used in an effective hole algorithm, satisfactory T c predictions can be made, corroborating the deleterious influence on T c of apical O and earlier assumptions concerning hole distributions. For the case of stacking of more than two CuO2 planes, the inner plane has to be treated as an infinite layer analog in the effective hole model. A separation into inner and outer planes with different dopings is indeed observed by Knight shift, with higher doping in the latter. This is explained here as being due to a tendency to equalize an effective doping degree, as the outer planes lose holes in resonance of bonding with the apical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Oshima and K. Motida, J. Supercond. 15, 165–167 (2002).

    Google Scholar 

  2. M. R. Presland and J. L. Tallon, Physica C 176, 95(1991).

    Google Scholar 

  3. G. V. M. Williams and J. L. Tallon Physica C 258, 41(1996).

    Google Scholar 

  4. Y. J. Uemura, Phys. Rev. Lett. 62, 2317(1989).

    Google Scholar 

  5. J. M. Tranquada, S. M. Heald, A. R. Moodenbaugh, and Y. Xu, Phys. Rev. 38, 8893(1988).

    Google Scholar 

  6. B. O. Wells, Science 277, 1067(1997).

    Google Scholar 

  7. D. Ko and H. Oesterreicher, Physica C 277, 95(1997).

    Google Scholar 

  8. H. Oesterreicher, J. Alloys Comd. 270, L1(1998).

    Google Scholar 

  9. H. Oesterreicher, J. Low Temp. Phys. 177, 993(1999).

    Google Scholar 

  10. H. Oesterreicher, J. Supercond. 15, 511, (2002).

    Google Scholar 

  11. H. Oesterreicher, J. Solid State Chem. 163, 390(2002).

    Google Scholar 

  12. C. Park and R. L. Snyder J. Am. Cer. Soc. 78, 3171(1995).

    Google Scholar 

  13. H. Kotegawa, Y. Tokunaga, K. Ishida, G.-Q. Zhang, Y. Kitaoka, H. Kito, A. Iyo, K. Tokiwa, T. Watanabe, and H. Ihara, Phys. Review B 64, 064515(2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oesterreicher, H. Knight Shift Data and Superconducting T c Modeling Based on an Effective Hole Model. Journal of Superconductivity 16, 507–512 (2003). https://doi.org/10.1023/A:1023817003653

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023817003653

Navigation