Skip to main content
Log in

Development and in Vivo Evaluation of an Oral Delivery System for Low Molecular Weight Heparin Based on Thiolated Polycarbophil

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. It was the purpose of this study to develop a new oral drug delivery system for low molecular weight heparin (LMWH) providing an improved bioavailability and a prolonged therapeutic effect.

Methods. The permeation enhancing polycarbophil-cysteine conjugate (PCP-Cys) used in this study displayed 111.4 ± 6.4 μM thiol groups per gram polymer. Permeation studies on freshly excised intestinal mucosa were performed in Ussing chambers demonstrating a 2-fold improved uptake of heparin as a result of the addition of 0.5% (w/v) PCP-Cys and the permeation mediator glutathione (GSH).

Results. Tablets containing PCP-Cys, GSH, and 279 IU of LMWH showed a sustained drug release over 4 h. To guarantee the swelling of the polymeric carrier matrix in the small intestine tablets were enteric coated. They were orally given to rats. For tablets being based on the thiomer/GSH system an absolute bioavailability of 19.9 ± 9.3% (means ± SD; n = 5) vs. intravenous injection could be achieved, whereas tablets comprising unmodified PCP did not lead to a significant (p < 0.01) heparin concentration in plasma. The permeation enhancing effect and subsequently a therapeutic heparin level was maintained for 24 h after a single dose.

Conclusions. Because of the strong and prolonged lasting permeation enhancing effect of the thiomer/GSH system, the oral bioavailability of LMWH could be significantly improved. This new delivery system represents therefore a promising tool for the oral administration of heparin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Hirsh, T. E. Warkentin, R. Raschke, C. Granger, E. M. Ohman, and J. E. Dalen. Heparin and low-molecular-weight heparin: mechanisms of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest 114:489–510 (1998).

    Google Scholar 

  2. J. K. Thompson-Ford. Low-molecular-weight-heparin for the treatment of deep vein thrombosis. Pharmacotherapy 18:748–758 (1998).

    PubMed  Google Scholar 

  3. Y. Lee, S. H. Kim, and Y. Byun. Oral delivery of new heparin derivatives in rats. Pharm. Res. 17:1259–1264 (2000).

    PubMed  Google Scholar 

  4. Y. Jiao, N. Ubrich, M. Marchand-Arvier, C. Vigneron, M. Hoffman, T. Lecompte, and P. Maincent. In vitro and in vivo evaluation of oral heparin-loaded polymeric nanoparticles in rabbits. Circulation 105:230–235 (2002).

    PubMed  Google Scholar 

  5. A. Leone-Bay, D. R. Paton, J. Freeman, C. Lercara, D. O'Toole, D. Gschneidner, E. Wang, E. Harris, C. Rosado, T. Rivera, A. DeVincent, M. Tai, F. Mercogliano, R. Agarwal, H. Leipold, and R. A. Baughman. Synthesis and evaluation of compounds that facilitate the gastrointestinal absorption of heparin. J. Med. Chem. 41:1163–1171 (1998).

    PubMed  Google Scholar 

  6. A. K. Morton, H. E. Edwards, J. C. Allen, and G. O. Phillips. An evaluation of the oral administration of commercial and fractionated heparin samples in rats. Int. J. Pharm. 9:321–335 (1981).

    Google Scholar 

  7. M. Ueno, T. Nakasaki, I. Horikoshi, and N. Sakuragawa. Oral administration of liposomally-entrapped heparin to beagle dogs. Chem. Pharm. Bull. 30:2245–2247 (1982).

    PubMed  Google Scholar 

  8. B. J. Aungst, H. Saitoh, D. L. Burcham, S. M. Huang, S. A. Mousa, and M. A. Hussain. Enhancement of the intestinal absorption of peptides and non-peptides. J. Control. Release 41:19–31 (1996).

    Google Scholar 

  9. A. Bernkop-Schnürch, V. Schwarz, and S. Steininger. Polymers with thiol groups: a new generation of mucoadhesive polymers? Pharm. Res. 16:876–881 (1999).

    PubMed  Google Scholar 

  10. A. Bernkop-Schnürch and S. Steininger. Synthesis and characterization of mucoadhesive thiolated polymers. Int. J. Pharm. 194:239–247 (2000).

    PubMed  Google Scholar 

  11. A. E. Clausen and A. Bernkop-Schnürch. In vitro evaluation of the permeation-enhancing effect of thiolated polycarbophil. J. Pharm. Sci. 89:1253–1261 (2000).

    PubMed  Google Scholar 

  12. A. E. Clausen and A. Bernkop-Schnürch. Thiolated carboxymethylcellulose: in vitro evaluation of its permeation enhancing effect on peptide drugs. Eur. J. Pharm. Biopharm. 51:25–32 (2001).

    PubMed  Google Scholar 

  13. C. E. Kast and A. Bernkop-Schnürch. Influence of the molecular mass on the permeation enhancing effect of different poly(acrylates). STP Pharm. 12:351–356 (2002).

    Google Scholar 

  14. M. K. Marschütz, P. Caliceti, and A. Bernkop-Schnürch. Design and in vivo evaluation of an oral delivery system for insulin. Pharm. Res. 17:1468–1474 (2000).

    PubMed  Google Scholar 

  15. K. Yoshimura, Y. Iwauchi, S. Sugiyama, T. Kuwamura, Y. Odaka, T. Satoh, and H. Kitagawa. Transport of L-cysteine and reduced glutathione through biological membranes. Res. Commun. Chem. Pathol. Pharmacol. 37:171–186 (1982).

    PubMed  Google Scholar 

  16. A. E. Clausen, C. E. Kast, and A. Bernkop-Schnürch. The role of glutathione in the permeation enhancing effect of thiolated polymers. Pharm. Res. 19:602–608 (2002).

    PubMed  Google Scholar 

  17. N. Blumenkrantz and G. Asboe-Hansen. New method for quantitative determination of uronic acids. Anal. Chem. 54:484–489 (1973).

    Google Scholar 

  18. S. R. Money and J. W. York. Development of oral heparin therapy for prophylaxis and treatment of deep venous thrombosis. Cardiovasc. Surg. 9:211–218 (2001).

    PubMed  Google Scholar 

  19. B. J. Aungst. Intestinal permeation enhancers. J. Pharm. Sci. 89:429–442 (2000).

    PubMed  Google Scholar 

  20. M. D. Gonze, J. D. Manord, A. Leone-Bay, R. A. Baughman, and C. L. Garrard. W. C. III Sternberg, and S. R. Money. Orally administered heparin for preventing deep venous thrombosis. Am. J. Surg. 176:176–178 (1998).

    PubMed  Google Scholar 

  21. K. Salartash, M. D. Gonze, A. Leone-Bay, and R. A. Baughman. W. C. III Sternberg, and S. R. Money. Oral low-molecular weight heparin and delivery agent prevents jugular venous thrombosis in the rat. J. Vasc. Surg. 30:526–532 (1999).

    PubMed  Google Scholar 

  22. R. G. Riley, K. L. Green, J. D. Smart, J. Tsibouklis, J. A. Davis, F. Hampson, P. W. Dettmar, and W. R. Wilber. The gastrointestinal transit profile of 14C-labelled poly(acrylic acids): an in vivo study. Biomaterials 22:1861–1867 (2001).

    PubMed  Google Scholar 

  23. T. Iantomasi, F. Favilli, P. Marraccini, T. Magaldi, P. Bruni, and M. T. Vincenzini. Glutathione transport system in human small intestine epithelial cells. Biochim. Biophys. Acta 1330:274–283 (1997).

    PubMed  Google Scholar 

  24. T. Rivera, A. Leone-Bay, D. R. Paton, H. Leipold, and R. A. Baughman. Oral delivery of heparin in combination with N-[8-(2-hydroxybenzoyl)amino]caprylate: pharmacological considerations. Pharm. Res. 14:1830–1834 (1997).

    PubMed  Google Scholar 

  25. R. A. Baughman, S. C. Kapoor, R. Agarwal, J. Kisicki, F. Catella-Lawson, and G. A. FitzGerald. Oral delivery of anticoagulant doses of heparin. A randomized, double blind, controlled study in humans. Circulation 98:1610–1615 (1998).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kast, C.E., Guggi, D., Langoth, N. et al. Development and in Vivo Evaluation of an Oral Delivery System for Low Molecular Weight Heparin Based on Thiolated Polycarbophil. Pharm Res 20, 931–936 (2003). https://doi.org/10.1023/A:1023803706746

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023803706746

Navigation