Advertisement

Journal of Materials Science

, Volume 38, Issue 10, pp 2223–2231 | Cite as

Comparison of microstructures for plane shock-loaded and impact crater-related nickel: the microtwin-microband transition

  • E. V. Esquivel
  • L. E. Murr
  • E. A. Trillo
  • M. Baquera
Article

Abstract

Plane-wave shock-loaded Ni exhibits {111} microtwins which increase in frequency with increasing peak shock pressure above a critical twinning pressure of ∼30 GPa. In contrast, microbands coincident with traces of {111} are produced below impact craters in Ni targets by stainless steel projectiles at velocities up to 3.5 km/s. The microband widths are ten times the 0.02 μm twin widths and are characterized by misorientations of roughly 2°. Both shock-loaded and impacted Ni have similar dislocation cell structures which decrease in cell size with increasing pressure or equivalent stress. The exclusive formation of microbands in connection with impact craters in Ni is expected on the basis of its high SFE (∼130 mJ/m2), and a simple dislocation model is developed for the microtwin-microband transition based on graphical summaries which include shock (stress) geometry and SFE effects in FCC metals and alloys.

Keywords

Nickel Equivalent Stress Dislocation Cell Impact Crater Shock Pressure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Quinones, J. M. Rivas and L. E. Murr, J. Mater. Sci. Lett. 14 (1995) 685.Google Scholar
  2. 2.
    S. A. Quinones and L. E. Murr, Phys. Stat. Sol. (a) 166 (1998) 763.Google Scholar
  3. 3.
    M. Hatherly and A. S. Malin, Metal Tech. 6 (1979) 308.Google Scholar
  4. 4.
    A. S. Maline and M. Hatherly, ibid. 13 (1979) 463.Google Scholar
  5. 5.
    P. J. Jackson, Scripta Metall. 17 (1983) 199.Google Scholar
  6. 6.
    J. C. Huang and G. T. Gray III, Acta Metall. 37(2) (1989) 3335.Google Scholar
  7. 7.
    R. J. Deangelis and J. B. Cohen, J. Metals 15 (1963) 681.Google Scholar
  8. 8.
    F. I. Grace, J. Appl. Phys. 40 (1969) 2649.Google Scholar
  9. 9.
    L. E. Murr, in “Shock Wave and High-Strain-Rate Phenomena in Metals,” edited by M. A. Meyers and L. E. Murr (Plenum Press, New York, 1981) Chap. 37, p. 607.Google Scholar
  10. 10.
    J. C. Sanchez, L. E. Murr and K. P. Staudhammer, Acta Mater. 45(8) (1997) 3223.Google Scholar
  11. 11.
    L. E. Murr, E. A. Trillo, A. A. Bujanda and N. E. Martinez, ibid. 50 (2002) 121.Google Scholar
  12. 12.
    B. Gonzales, L. E. Murr, O. L. Valerio, E. V. Esquivel and H. Lopez, Mater. Characterization, in press.Google Scholar
  13. 13.
    L. E. Murr, “Interfacial Phenomena in Metals and Alloys” (Addison-Wesley, Reading, MA, 1975); reprinted by Tech Books, Herndon, VA, 1991 and available from CBLS, 119 Brentwood St., Marietta, OH 45750; FAX: 740-374-8029.Google Scholar
  14. 14.
    F. Greulich and L. E. Murr, Mater. Sci. Engng. 37 (1979) 81.Google Scholar
  15. 15.
    M. A. Meyers, “Dynamic Behavior of Materials” (Wiley, New York, 1994).Google Scholar
  16. 16.
    L. E. Murr, in “Shock Waves in Condensed Matter” edited by S. C. Schmidt and N. C. Holmes (Elsevier Science, B.V., Amsterdam, 1998) p. 315.Google Scholar
  17. 17.
    L. E. Murr and D. Kuhlmann-Wilsdorf, Acta Metll. 26 (1978) 847.Google Scholar
  18. 18.
    L. E. Murr, in “Materials at High Strain Rates,” edited by T. Z. Blazynski (Elsevier Science, New York/London, 1987) Chap. 1, p. 1.Google Scholar
  19. 19.
    L. E. Murr and S.-H. Wang, Res. Mechanica 4 (1982) 237.Google Scholar
  20. 20.
    Z. S. Basinski and T. E. Mitchell, Phil. Mag. 13 (1966) 103.Google Scholar
  21. 21.
    C.-C. Li, J. D. Flasck, J. A. Yaker and W. C. Leslie, Met. Trans. A 9A (1978) 85.Google Scholar
  22. 22.
    B. Scholtes, O. VÖhringer and E. Macherasch, in Proc. ICMA6 (Pergamon, New York, 1982) Vol. 1, p. 255.Google Scholar
  23. 23.
    S. Thuillier and E. F. Rauch, Acta Metall, et Mater. 42(6) (1994) 1973.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • E. V. Esquivel
    • 1
  • L. E. Murr
    • 1
  • E. A. Trillo
    • 1
  • M. Baquera
    • 1
  1. 1.Department of Metallurgical and Materials EngineeringThe University of Texas at El PasoEl PasoUSA

Personalised recommendations