Skip to main content

Advertisement

Log in

Errantiviruses of Drosophila

  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

The view on Drosophila long terminal repeat (LTR) retrotransposons, which have three reading frames, as endogenous retroviruses or errantiviruses (ERVs, according to the latest ICTV nomenclature) is discussed. Data on the biology of ERVs and the mechanisms of their involvement in genetic instability of Drosophila are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boeke, J.D. and Corces, V.G., Transcription and Reverse Transcription of Retrotransposons, Annu. Rev. Microbiol., 1989, vol. 43, pp. 403-434.

    Google Scholar 

  2. Doolittle, R.F., Feng, D.F., Johnson, M.S., and McClure, M.A., Origins and Evolutionary Relationships of Retroviruses, Quart. Rev. Biol., 1989, vol. 64, pp. 1-30.

    Google Scholar 

  3. Boeke, J.D., Eickbush, T.H., Sandmeyer, S.B., and Voytas, D.F., Metaviridae, Virus Taxonomy: ICTV VII Report, Murphy, F.A., Ed., New York: Springer-Verlag, 2000, pp. 123-135.

    Google Scholar 

  4. Khesin, R.B., Nepostoyanstvo genoma (Instability of the Genome), Moscow: Nauka, 1985.

    Google Scholar 

  5. Terzian, C., Pelisson, A., and Bucheton, A., Evolution and Phylogeny of Insect Endogenous Retroviruses, BMC Evol. Biol., 2001, pp. 1-3.

  6. Larsson, E., Kato, N., and Cohen, M., Human Endogenous Proviruses, Curr. Topics Microbiol. Immunol., 1989, vol. 148, pp. 115-132.

    Google Scholar 

  7. Pelisson, A., Song, S.U., Prud'homme, N., et al., gypsy Transposition Correlates with the Production of a Retroviral Envelope-like Protein under the Tissue-Specific Control of the Drosophila flamenco Gene, EMBO J., 1994, vol. 13, pp. 4401-4411.

    Google Scholar 

  8. Leblanc, P., Desset, S., Dastugue, B., and Vaury, C., Invertebrate Retroviruses: ZAM, a New Candidate in D. melanogaster, EMBO J., 1997, vol. 16, pp. 7521- 7531.

    Google Scholar 

  9. Tanda, S., Mullor, J.L., and Corces, V.G., The Drosophila tom Retrotransposon Encodes an Envelope Protein, Mol. Cell. Biol., 1994, vol. 14, pp. 5392-5401.

    Google Scholar 

  10. Whalen, J.H. and Grigliatti, T.A., Molecular Characterization of a Retrotransposon in Drosophila melanogaster, nomad, and Its Relationship to Other Retroviruslike Mobil Elements, Mol. Gen. Genet., 1998, vol. 260, no. 5, pp. 401-409.

    Google Scholar 

  11. Rohrmann, G.F. and Karplus, P.A., Relatedness of Baculovirus and gypsy Retrotransposon Envelope Proteins, BMC Evol. Biol., 2001, vol. 1, no. 1, p. 1.

    Google Scholar 

  12. Zhou, A., Webb, G., Zhu, X., and Steiner, D.F., Proteolytic Processing in the Secretory Pathway, J. Biol. Chem., 1999, vol. 274, no. 30, pp. 20 745-20 748.

    Google Scholar 

  13. Luciw, P.A. and Leung, N.J., The Retroviridae, Levy, J.A., Ed., New York: Plenum, 1995, vol. 1, pp. 159-298.

    Google Scholar 

  14. Song, S.U., Gerasimova, T., Kurkulos, M., et al., An Env-like Protein Encoded by a Drosophila Retroelement: Evidence that gypsy Is an Infectious Retrovirus, Genes Dev., 1994, vol. 8, pp. 2046-2057.

    Google Scholar 

  15. Boeke, J.D. and Stoye, J.P., Retroviruses, Cofin, J.M., Hughes, S.H., and Varmus, H.E., Eds., Cold Spring Harbor, New York: Cold Spring Harbor Lab., 1997, pp. 343- 435.

    Google Scholar 

  16. Friesen, P.D. and Nissen, M.S., Gene Organizations and Transcription of TED, a Lepidopteran Retrotransposon Integrated within the Baculovirus Genome, Mol. Cell. Biol., 1990, vol. 10, pp. 3067-3077.

    Google Scholar 

  17. Gael, C., Ficheux, D., and Darlix, J.-L., The Gag-like Protein of the Yeast Ty1 Retrotransposon Contains a Nucleic Acid Chaperone Domain Analogous to Retroviral Nucleocapsid Proteins, J. Biol. Chem., 2000, vol. 275, pp. 19 210-19 217.

    Google Scholar 

  18. Wright, D.A. and Voytas, D.F., Potential Retroviruses in Plants: Tat1 Is Related to a Group of Arabidopsis thaliana Ty3/gypsy Retrotransposons That Encode Envelope-like Proteins, Genetics, 1998, vol. 149, no. 2, pp. 703-715.

    Google Scholar 

  19. Linial, M.L., Foamy Viruses Are Unconventional Retroviruses, J. Virol., 1999, vol. 73, pp. 1747-1755.

    Google Scholar 

  20. Robbins, J., Dilworth, S.M., Laskey, R.A., and Dingwal, C., Two Independent Basic Domains in Nucleoplasmin Nuclear Targeting Sequence: Identification of a Class of Bipartite Nuclear Targeting Sequence, Cell (Cambridge, Mass.), 1991, vol. 64, pp. 615-623.

    Google Scholar 

  21. Yu, S.E., Edelmann, K., Strong, R.K., et al., The Carboxyl Terminus of the Human Foamy Virus Gag Protein Contains Separable Nucleic Acid Binding and Nuclear Transport Domains, J. Virol., 1996, vol. 70, no. 12, pp. 8255-8262.

    Google Scholar 

  22. Syomin, B.V., Turapov, O.A., Stepanov, A.S., and Ilyin, Yu.V., Binding with Nucleic Acids of a Protein Encoded by the First Open Reading Frame of the gypsy Retrotransposon (MDG4), Mol. Biol. (Moscow), 1999, vol. 33, no. 3, pp. 423-427.

    Google Scholar 

  23. Syomin, B.V., Malikova, M.A., Stepanov, A.S., and Ilyin, Yu.V., Homologous and Heterologous Type 2 Casein Kinases Similarly Affect the Affinity of gypsy (MDG4) Structural Protein Gag for RNA, Mol. Biol. (Moscow), 2000, vol. 36, no. 1, pp. 28-29.

    Google Scholar 

  24. Stroumbakis, N.D., Li, Z., and Tolias, P.P., A Homolog of Human Transcription Factor NF-X1 Encoded by the Drosophila shuttle craft Gene Is Required in the Embryonic Central Nervous System,Mol. Cell. Biol., 1996, vol. 16, pp. 192-201.

    Google Scholar 

  25. Ma, Q., Alder, H., Nelson, K.K., et al., Analysis of the Murine All-1 Gene Reveals Conserved Domains with Human ALL-1 and Identifies a Motif Shared with DNA Methyltransferases, Proc. Natl. Acad. Sci. USA, 1993, vol. 90, pp. 6350-6354.

    Google Scholar 

  26. Chumakov, I.M., Berdicheskii, F.B., Sokolova, N.V., et al., Identification of the Protein Product of the SON New Human Gene and the Biological Effect of a Changed SON Gene Introduced in Mammalian Cells, Mol. Biol. (Moscow), 1991, vol. 25, pp. 731-739.

    Google Scholar 

  27. Zamore, P.D., Zapp, M.L., and Green, M.R., Gene Expression: RNA Binding: Beta S and Basics, Nature, 1990, vol. 348, pp. 485-486.

    Google Scholar 

  28. De Rocquigny, H., Gabus, C., Vincent, A., et al., Viral RNA Annealing Activities of Human Immunodeficiency Virus Type 1 Nucleocapsid Protein Require Only Peptide Domains Outside the Zinc Fingers, Proc. Natl. Acad. Sci. USA, 1992, vol. 89, pp. 6472-6476.

    Google Scholar 

  29. Syomin, B.V., Popenko, V.I., Malikova, M.A., et al., Retroelement gypsy (MDG4) Polyprotein Gag Expressed in a Bacterial System Is Able to Form Multimeric Complexes, Dokl. Akad. Nauk, 2001, vol. 380, no. 2, pp. 266- 268.

    Google Scholar 

  30. Burns, N.R., Saibil, H.R., White, N.S., et al., Symmetry, Flexibility and Permeability in the Structure of Yeast Retrotransposon Virus-like Particles, EMBO J., 1992, vol. 11, pp. 1155-1164.

    Google Scholar 

  31. Malikova, M.A., Syomin, B.V., and Stepanov, A.S., Phosphorylation of the Protein Encoded by the First Open Reading Frame of the gypsy Retrotransposon by Homologous and Heterologous Type 2 Casein Kinases, Biokhimiya, 2001, vol. 66, no. 2, pp. 254-260.

    Google Scholar 

  32. Syomin, B.V., Kandror, K.V., Semakin, A.B., et al., Presence of gypsy (mdg4) Retrotransposon in the Extracellular Virus-like Particles, FEBS Lett., 1993, vol. 323, pp. 285-288.

    Google Scholar 

  33. Syomin, B.V., Kandror, K.V., Semakin, A.V., et al., A Study of Several Biochemical Characteristics of gypsy (MDG4) Virus-like Particles, Biokhimiya, 1994, vol. 59, no. 4, pp. 363-369.

    Google Scholar 

  34. Lecher, P., Bucheton, A., and Pelisson, A., Expression of the Retrovirus gypsy as Ultrastructurally Detectable Particles in the Ovaries of Flies Carrying a Permissive flamenco Allele, J. Gen. Virol., 1997, vol. 78, pp. 2379- 2388.

    Google Scholar 

  35. Leblanc, P., Desset, S., Giorgi, F., et al., Life Cycle of an Endogenous Retrovirus ZAM, in Drosophila melanogaster, J. Virol., 2000, vol. 74, pp. 19 658-10 669.

    Google Scholar 

  36. Yu, S.F., Sullivan, M.D., and Linial, M.L., Evidence That the Human Foamy Virus Genome Is DNA, J. Virol., 1999, vol. 73, no. 2, pp. 1566-1572.

    Google Scholar 

  37. Stacey, S.N., Lansman, R.A., Brock, H.W., and Grigliani, T.A., Distribution and Conservation of Mobile Elements in the Genus Drosophila, Mol. Biol. Evol., 1986, vol. 3, pp. 522-534.

    Google Scholar 

  38. Mejlumian, L., Pelisson, A., Bucheton, A., and Terzian, C., Comparative and Functional Studies of Drosophila Species Invasion by the gypsy Endogenous Retrovirus, Genetics, 2002, vol. 160, no. 1, pp. 201-209.

    Google Scholar 

  39. Kim, A., Terzian, C., Santamaria, P., et al., Retroviruses in Invertebrates: The gypsy Retrotransposon Is Apparently an Infectious Retrovirus of Drosophila melanogaster, Proc. Natl. Acad. Sci. USA, 1994, vol. 91, no. 4, pp. 1285-1289.

    Google Scholar 

  40. Syomin, B.V. and Ilyin, Yu.V., Intracellular Virus-like Particles of the gypsy Retrotransposon (MDG4) as an Infectivity Factor, Dokl. Akad. Nauk, 1994, vol. 339, no. 6, pp. 838-841.

    Google Scholar 

  41. Syomin, B.V., Fedorova, L.I., Surkov, S.A., and Ilyin, Y.V., Drosophila melanogaster Endogenous Retrovirus gypsy Can Propagate in Drosophila hydei Cells, Mol. Gen. Genet., 2001, vol. 264, no. 5, pp. 588-594.

    Google Scholar 

  42. Chalvet, F., Teysset, L., Terzian, C., et al., Proviral Amplification of the gypsy Endogenous Retrovirus of Drosophila melanogaster Involves Env-Independent Invasion of the Female Germline, EMBO J., 1999, vol. 4, pp. 2659-2669.

    Google Scholar 

  43. Pelisson, A., Mejlumian, L., Robert, V., et al., Drosophila Germline Invasion by the Endogenous Retrovirus gypsy: Involvement of the Viral env Gene, Insect. Biochem. Mol. Biol., 2002, vol. 32, pp. 1249-1256.

    Google Scholar 

  44. Lock, L.F., Keshet, E., Gilbert, D.J., et al., Studies of the Mechanism of Spontaneous Germline Ecotropic Provirus Acquisition in Mice, EMBO J., 1988, vol. 7, pp. 4169- 4178.

    Google Scholar 

  45. Syomin, B.V., Leonova, T.Ya., and Ilyin, Y.V., Evidence for Horizontal Transfer of the LTR Retrotransposon mdg3 That Lacks an env Gene, Mol. Genet. Genomics, 2002, vol. 267, pp. 418-423.

    Google Scholar 

  46. Van der Laan, L.J., Lockey, C., Griffeth, B.C., et al., Infection by Porcine Endogenous Retrovirus after Islet Xenotransplantation in SCID Mice, Nature, 2000, vol. 407, no. 6800, pp. 90-94.

    Google Scholar 

  47. Ritzhaupt, A., van der Laan, L.J., Salomon, D.R., and Wilson, C.A., Porcine Endogenous Retrovirus Infects but Does not Replicate in Nonhuman Primate Primary Cells and Cell Lines, J. Virol., 2002, vol. 76, no. 22, pp. 11 312-11 320.

    Google Scholar 

  48. Yolken, R.H., Karlsson, H., Bayer, T.A., et al., Retroviruses, Genes and Schizophrenia, Clin. Neurosci. Res., 2001, vol. 1, pp. 164-169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syomin, B.V., Ilyin, Y.V. Errantiviruses of Drosophila . Russian Journal of Genetics 39, 537–542 (2003). https://doi.org/10.1023/A:1023731616859

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023731616859

Keywords

Navigation