Skip to main content
Log in

Investigation of the Crystallisation Behaviour of Lead Titanate (PT), Lead Zirconate (PZ) and Lead Zirconate Titanate (PZT) by EXAFS-Spectroscopy and X-Ray Diffraction

  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Two solid solutions of lead zirconium titanates PbZr x Ti1 − x O3 (x = 0.1 and 0.35) as well as the reference compounds lead titanate and lead zirconate were prepared from zirconium and titanium n-propoxide, dissolved in 2-methoxyethanol, by sol-gel process. The amorphous products after pyrolysis of the dried gels and the crystalline phases were studied by EXAFS spectroscopy to monitor the structural changes from the amorphous oxide mixture to the crystalline ceramics after calcination. Additionally, the crystalline phases were identified by X-ray diffraction (XRD).

It follows from the analysis of the EXAFS data that the local order of the amorphous phases seems to be completely different from that of the crystalline phase. There is no indication of a preformation of the local order of the perovskite structure. The analysis of our EXAFS spectra can be interpreted very consistently with the assumption that in the amorphous samples a segregation exists on molecular level and the low crystallisation temperatures are a consequence of very short diffusion paths.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Jaffe, W.R. Cook Jr., and H. Jaffe, Piezoelectric Ceramics (Academic Press, London, 1971).

    Google Scholar 

  2. Y. Xu, Ferroelectric Materials and their Applications (Elsevier, Amsterdam, 1991).

    Google Scholar 

  3. J. Fukushima, K. Kodaira, and T. Matushita, J. Mater. Sci. 19, 595 (1984).

    Google Scholar 

  4. S.R. Gurkovich and J.B. Blum, in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by L.L. Hench and D.R. Ulrich (J. Wiley and Sons, New York, 1984), p. 152.

    Google Scholar 

  5. K.D. Budd, S.K. Dey, and D.A. Payne, Proc. Br. Cer. Soc. 36, 107 (1985).

    Google Scholar 

  6. R. Merkle and H. Bertagnolli, J. Mater. Chem. 8, 2433 (1998).

    Google Scholar 

  7. D. Peter, T.S. Ertel, and H. Bertagnolli, J. Sol-Gel Sci. Tech. 3, 91 (1994).

    Google Scholar 

  8. D. Peter, T.S. Ertel, and H. Bertagnolli, J. Sol-Gel Sci. Tech. 5, 5 (1995).

    Google Scholar 

  9. U. Reinöhl, H. Bertagnolli, T.S. Ertel, W. Hörner, and A. Weber, Ber. Bunsenges. Phys. Chem. 102, 144 (1998).

    Google Scholar 

  10. U. Kolb, D. Gutwerk, R. Beudert, and H. Bertagnolli, J. Non-Cryst-Solids 217, 162 (1997).

    Google Scholar 

  11. R. Beudert, S. Batschkowitsch, H. Bertagnolli, D. Gutwerk, U. Kolb, and J. Weigelt, Ber. Bunsenges. Phys. Chem. 100, 1706 (1997).

    Google Scholar 

  12. P.R. Coffman and S.K. Dey, J. Sol-Gel Sci. Tech. 1, 251 (1994).

    Google Scholar 

  13. S.P. Faure, P. Barboux, P. Gaucher, and J. Livage, J. Mater. Chem. 2, 713 (1992).

    Google Scholar 

  14. D. Sporn, F. Raether, and S. Merklein, Mater. Sci. Eng. A 168, 205 (1993).

    Google Scholar 

  15. R. Ostertag, G. Rinn, G. Tuenker, and H. Schmidt, Br. Ceram. Proc. 41, 11 (1989).

    Google Scholar 

  16. J. Brieger, R. Merkle, H. Bertagnolli, and K. Müller, Ber. Bunsenges. Phys. Chem. 102, 1376 (1998).

    Google Scholar 

  17. E.A. Stern, Phys. Rev. B 10, 3027 (1974).

    Google Scholar 

  18. F.W. Lytle, D.E. Sayers, and E.A. Stern, Phys. Rev. B 11, 4825 (1975).

    Google Scholar 

  19. R. Merkle and H. Bertagnolli, Ber. Bunsenges. Phys. Chem. 102, 1023 (1998).

    Google Scholar 

  20. Y. Hayashi and J. B. Blum, J. Mater. Sci. 22, 2655 (1987).

    Google Scholar 

  21. R. Merkle and H. Bertagnolli, J. Mater. Sci. 33, 4341 (1998).

    Google Scholar 

  22. R. Merkle, Ph.D. thesis, University of Stuttgart, 1998.

  23. T.S. Ertel, H. Bertagnolli, S. Hückmann, U. Kolb, and D. Peter, Appl. Spectrosc. 46, 690 (1992).

    Google Scholar 

  24. M. Newville, P. Livins, Y. Yakoby, J.J. Rehr, and E.A. Stern, Phys. Rev. B 47, 14126 (1993).

    Google Scholar 

  25. S.J. Gurman, N. Binsted, and I. Ross, J. Phys. C 19, 1845 (1986).

    Google Scholar 

  26. A.M. Glazer and S.A. Mabud, Acta Cryst. B 24, 1968 (1982).

    Google Scholar 

  27. A.M. Glazer, K. Roleder, and J. Dec, Acta Cryst. B 49, 846 (1993).

    Google Scholar 

  28. J.K. Burdett, T. Hughbanks, G.J. Miller, J.W. Richardson, and J.V. Smith, J. Am. Chem. Soc. 109, 3639 (1987).

    Google Scholar 

  29. M.P. Feth, A. Weber, R. Merkle, U. Reinöhl, and H. Bertagnolli, Journal of Non-Crystalline Solids, 298(1), 43 (2002).

    Google Scholar 

  30. J. Leciejewicz, Acta Cryst. 1, 1948 (1967).

    Google Scholar 

  31. D.K. Smith and H.W. Newkirk, Acta Cryst. 18, 983 (1965).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feth, M.P., Weber, A., Merkle, R. et al. Investigation of the Crystallisation Behaviour of Lead Titanate (PT), Lead Zirconate (PZ) and Lead Zirconate Titanate (PZT) by EXAFS-Spectroscopy and X-Ray Diffraction. Journal of Sol-Gel Science and Technology 27, 193–204 (2003). https://doi.org/10.1023/A:1023706802758

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023706802758

Navigation