Skip to main content
Log in

Cyclosporin A-Sensitive Decrease in the Transmembrane Potential across the Inner Membrane of Liver Mitochondria Induced by Low Concentrations of Fatty Acids and Ca2+

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

At low Ca2+ concentrations the pore of the inner mitochondrial membrane can open in substates with lower permeability (Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 468-477). Recently, we showed that Ca2+ loading of mitochondria augments the cyclosporin A-dependent decrease in transmembrane potential (ΔΨ) across the inner mitochondrial membrane caused by 10 μM myristic acid but does not affect the stimulation of respiration by this fatty acid. We have proposed that in our experiments the pore opened in a substate with lower permeability rather than in the “classic” state (Bodrova, M. E., et al. (2000) IUBMB Life, 50, 189-194). Here we show that under conditions lowering the probability of “classic pore” opening in Ca2+-loaded mitochondria myristic acid induces the cyclosporin A-sensitive ΔΨ decrease and mitochondrial swelling more effectively than uncoupler SF6847 does, though their protonophoric activities are equal. In the absence of Pi and presence of succinate and rotenone (with or without glutamate) cyclosporin A either reversed or only stopped ΔΨ decrease induced by 5 μM myristic acid and 5 μM Ca2+. In the last case nigericin, when added after cyclosporin A, reversed the ΔΨ decrease, and the following addition of EGTA produced only a weak (if any) ΔΨ increase. In Pi-containing medium (in the presence of glutamate and malate) cyclosporin A reversed the ΔΨ decrease. These data show that the cyclosporin A-sensitive decrease in ΔΨ by low concentrations of fatty acids and Ca2+ cannot be explained by specific uncoupling effect of fatty acid. We propose that: 1) low concentrations of Ca2+ and fatty acid induce the pore opening in a substate with a selective cation permeability, and the cyclosporin A-sensitive ΔΨ decrease results from a conversion of ΔΨ to pH gradient due to the electrogenic cation transport in mitochondria; 2) the ADP/ATP-antiporter is involved in this process; 3) higher efficiency of fatty acid compared to SF6847 in the Ca2+-dependent pore opening seems to be due to its interaction with the nucleotide-binding site of the ADP/ATP-antiporter and higher affinity of fatty acids to cations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Hunter, D. R., Haworth, R. A., and Southard, J. H. (1976) J. Biol. Chem., 251, 5069-5077.

    Google Scholar 

  2. Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 453-459.

    Google Scholar 

  3. Haworth, R. A., and Hunter, D. R. (1979) Arch. Biochem. Biophys., 195, 460-467.

    Google Scholar 

  4. Hunter, D. R., and Haworth, R. A. (1979) Arch. Biochem. Biophys., 195, 468-477.

    Google Scholar 

  5. Ichas, F., and Mazat, J.-P. (1998) Biochim. Biophys. Acta, 1366, 33-50.

    Google Scholar 

  6. Furneier, N., and Ducket, G. (1987) J. Bioenerg. Biomembr., 19, 297-303.

    Google Scholar 

  7. Andreev, A. Yu., Dedukhova, V. I., and Mokhova, E. N. (1990) Biol. Membr. (Moscow), 7, 480-486.

    Google Scholar 

  8. Brustovetsky, N. N., Egorova, M. V., Gnutov, D. Yu., Mokhova, E. N., and Skulachev, V. P. (1992) FEBS Lett., 315, 233-236.

    Google Scholar 

  9. Petronilli, V., Cola, C., Massari, S., Colonna, R., and Bernardi, P. (1993) J. Biol. Chem., 268, 21939-21945.

    Google Scholar 

  10. Broekemeier, K. M., and Pfeiffer, D. R. (1995) Biochemistry, 34, 16440-16449.

    Google Scholar 

  11. Schonfeld, P., and Bohnensack, R. (1997) FEBS Lett., 420, 167-170.

    Google Scholar 

  12. Wieckowski, M. R., and Wojtczak, L. (1998) FEBS Lett., 423, 339-342.

    Google Scholar 

  13. Chavez, E., Zazueta, C., and Garcia, N. (1999) FEBS Lett., 445, 189-191.

    Google Scholar 

  14. Le Quo, K., and Le Quoc, D. (1988) Arch. Biochem. Biophys., 265, 249-257.

    Google Scholar 

  15. Dierks, T., Salentin, A., Heberger, C., and Kramer, R. (1990) Biochim. Biophys. Acta, 1028, 268-280.

    Google Scholar 

  16. Halestrap, A. P., and Davidson, A. M. (1990) Biochem. J., 268, 153-160.

    Google Scholar 

  17. Halestrap, A. P., Woodfield, K.-Y., and Connern, C. P. (1997) J. Biol. Chem., 272, 3346-3354.

    Google Scholar 

  18. Crompton, M. (1999) Biochem. J., 341, 233-249.

    Google Scholar 

  19. Andreyev, A. Yu., Bondareva, T. O., Dedukhova, V. I., Mokhova, E. N., Skulachev, V. P., Tsofina, L. M., Volkov, N. I., and Vygodina, T. V. (1989) Eur. J. Biochem., 182, 585-592.

    Google Scholar 

  20. Relay, W. W., and Pfeiffer, D. R. (1985) J. Biol. Chem., 260, 12416-12425.

    Google Scholar 

  21. Davidson, A. M., and Halestrap, A. P. (1990) Biochem. J., 268, 147-152.

    Google Scholar 

  22. Gainutdinov, M. Kh., Konov, V. V., Ishmukhamedov, R. N., Zakharova, T. N., Khalilova, M. A., and Safarov, K. S. (1992) Biokhimiya, 57, 1618-1626.

    Google Scholar 

  23. Novgorodov, S. A., and Gudz, T. I. (1996) J. Bioenerg. Biomembr., 28, 139-145.

    Google Scholar 

  24. Kuschnareva, Yu. E., and Sokolova, P. M. (2000) Arch. Biochem. Biophys., 376, 377-388.

    Google Scholar 

  25. Bodrova, M. E., Dedukhova, V. I., Samartsev, V. N., and Mokhova, E. N. (2000) IUBMB Life, 50, 189-194.

    Google Scholar 

  26. Akerman, K. E. O., and Wikstrom, M. K. F. (1976) FEBS Lett., 68, 191-197.

    Google Scholar 

  27. Scarpa, A. (1979) Meth. Enzymol., 56, 301-338.

    Google Scholar 

  28. Nicholls, D., and Akerman, K. (1982) Biochim. Biophys. Acta, 683, 57-88.

    Google Scholar 

  29. Wojtczak, L. (1974) FEBS Lett., 44, 25-30.

    Google Scholar 

  30. Schonfeld, P., Schluter, T., Schuttig, R., and Bohnensack, R. (2001) FEBS Lett., 491, 45-49.

    Google Scholar 

  31. Sharpe, M. A., Cooper, C. E., and Wrigglesworth, J. M. (1994) J. Membr. Biol., 141, 21-28.

    Google Scholar 

  32. Chernyak, B. V. (1997) Biosci. Rep., 17, 293-302.

    Google Scholar 

  33. Bernardi, P. (1992) J. Biol. Chem., 267, 8834-8839.

    Google Scholar 

  34. Agureev, A. P., and Mokhova, E. N. (1979) in Reactions of Living Systems and the State of Energy Metabolism (Kondrashova, M. N., ed.) [in Russian], Institute of Biological Physics, Pushchino-on-Oka, pp. 27-51.

    Google Scholar 

  35. Kargopolov, A. V., and Yaguzhinskii, L. S. (1978) Biokhimiya, 43, 2150-2153.

    Google Scholar 

  36. Skulachev, V. P. (1991) FEBS Lett., 294, 158-162.

    Google Scholar 

  37. Starkov, A. A., Bloch, D. A., Chernyak, B. V., Dedukhova, V. I., Mansurova, S. E., Severina, I. I., Simonian, R. A., Vigodina, T. V., and Skulachev, V. P. (1997) Biochim. Biophys. Acta, 1318, 159-172.

    Google Scholar 

  38. Skulachev, V. P. (1988) Membrane Bioenergetics, Springer, Berlin.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bodrova, M.E., Brailovskaya, I.V., Efron, G.I. et al. Cyclosporin A-Sensitive Decrease in the Transmembrane Potential across the Inner Membrane of Liver Mitochondria Induced by Low Concentrations of Fatty Acids and Ca2+ . Biochemistry (Moscow) 68, 391–398 (2003). https://doi.org/10.1023/A:1023691628110

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023691628110

Navigation