Skip to main content
Log in

“Reservoir Model” for Shallow Modulation-Doped Digital Magnetic Quantum Wells

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Digital magnetic heterostructures (DMH) are semiconductor structures with magnetic monolayers. Here we study electronic and magnetotransport properties of shallow modulation-doped (ZnSe/ZnCdSe) DMHs with spin-5/2 Mn impurities. We compare the “reservoir” model, possibly relevant to shallow geometries, to the usual “constant-density” model. Our results are obtained by solving the Kohn-Sham equations within the local spin density approximation (LSDA). In the presence of a magnetic field, we show that both models exhibit characteristic behaviors for the electronic structure, two-dimensional carrier density, Fermi level and transport properties. Our results illustrate the relevance of exchange and correlation effects in the study of shallow heterostructures of the group II-VI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. A. Crooker, D. A. Tulchinsky, J. Levy, D. D. Awschalom, R. Garcia, and N. Samarth, Phys. Rev. Lett. 75, 505(1995).

    PubMed  Google Scholar 

  2. D. D. Awschalom and N. Samarth, J. Magn. Magn. Mater. 200, 130(1999).

    Google Scholar 

  3. J. K. Furdyna, J. Appl. Phys. 64, R29(1988).

    Google Scholar 

  4. J. C. Egues and J. W. Wilkins, Phys. Rev. B 58, R16012(1998).

    Google Scholar 

  5. I. P. Smorchkova and N. Samarth, Appl. Phys. Lett. 69, 1640(1996).

    Google Scholar 

  6. I. P. Smorchkova, N. Samarth, J. M. Kikkawa, and D. D. Awschalom, Phys. Rev. Lett. 78, 3571(1997).

    Google Scholar 

  7. R. Fiederling, M. Keim, G. Reuscher, W. Ossau, G. Schmidt, A. Waag, and L. W. Molenkamp, Nature 402, 787(1999); Y. Ohno, D. K. Young, B. Beschoten, F. Matsukura, H. Ohno, and D. D. Awschalom, Nature 402, 790 (1999); G. Schmidt, G. Richter, P. Grabs, C. Gould, D. Ferrand, and L. W. Molenkamp, Phys. Rev. Lett. 87, 227203 (2001).

    Google Scholar 

  8. J. C. Egues, Phys. Rev. Lett. 80, 4578(1998); J. C. Egues, C. Gould, G. Richter, and L. W. Molenkamp, Phys. Rev. B 64, 195319 (2001); K. Chang and F. M. Peeters, Solid State Commun. 120, 181 (2001); Y. Guo, J. Q. Lu, B. L. Gu, and Y. Kawazoe, Phys. Rev. B 64, 155312 (2001).

    Google Scholar 

  9. G. A. Baraff and D. C. Tsui, Phys. Rev. B 24, 2274(1981).

    Google Scholar 

  10. A. Raymond and H. Sibari, Phys. Status Solid B 183, 159(1994).

    Google Scholar 

  11. M. van der Burgt, V. C. Karavolas, F. M. Peeters, J. Singleton, R. J. Nicholas, F. Herlach, J. J. Harris, M. van Hove, and G. Borghs, Phys. Rev. B 52, 12218(1995).

    Google Scholar 

  12. Y. Takagaki, K. Muraki, and S. Tarucha, Phys. Rev. B 56, 1057(1997).

    Google Scholar 

  13. A. Raymond et al., Semicond. Sci. Technol. 14, 915(1999).

    Google Scholar 

  14. S. P. Hong, K. S. Yi, and J. J. Quinn, Phys. Rev. B 61, 13745(2000).

    Google Scholar 

  15. H. J. P. Freire and J. C. Egues, Braz. J. Phys. 32, 327(2002); H. J. P. Freire and J. C. Egues, cond-mat/0112263 (2001).

    Google Scholar 

  16. S. H. Vosko, L. Wilk, and M. Nusair, Can. J. Phys. 58, 1200(1980).

    Google Scholar 

  17. T. Ando and Y. Uemura, J. Phys. Soc. Jpn. 36, 959(1974).

    Google Scholar 

  18. K. V. Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494(1980).

    Google Scholar 

  19. H. L. Stormer and D. C. Tsui, Science 220, 1241(1983).

    Google Scholar 

  20. R. Knobel, N. Samarth, J. G. E. Harris, and D. D. Awschalom, Phys. Rev. B 65, 235327(2002); J. G. E. Harris et al., Phys. Rev. Lett. 86, 4644 (2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freire, H.J.P., Egues, J.C. “Reservoir Model” for Shallow Modulation-Doped Digital Magnetic Quantum Wells. Journal of Superconductivity 16, 299–302 (2003). https://doi.org/10.1023/A:1023653000964

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023653000964

Navigation