Skip to main content
Log in

A Comparative Study of the Effect of Abscisic Acid and cAMP on Protein Synthesis in Wheat Caryopses under Drought Conditions

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The effect of exogenous abscisic acid and cAMP on synthesis of soluble proteins in wheat caryopses in drought has been studied. Both compounds affected the formation of the polypeptides whose synthesis was stimulated by dehydration: they increased the incorporation of the label into polypeptides of 13, 15, and 26 kD and decreased the incorporation of the label into polypeptides of 14, 64, and 77 kD. Abscisic acid and cAMP increased the level of the incorporation of [14C]leucine into the low-molecular-weight polypeptides of 12, 17, and 19 kD whose synthesis was suppressed by drought. These data suggest that the cyclic adenylate signal system is probably involved in the effect of abscisic acid on protein synthesis in drought.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Audran, C., Borel, C., Frey, A., Sotta, B., Meyer, C., Simonneau, T., and Marion-Poll, A. (1998) Plant Physiol., 118, 1021-1028.

    Google Scholar 

  2. Grill, E., and Himmelbach, A. (1998) Curr. Opin. Plant Biol., 1, 412-418.

    Google Scholar 

  3. Owen, J. M., and Napier, J. A. (1988) Plants Today, 55, 55-59.

    Google Scholar 

  4. Zeevaart, J. A. D., and Creelman, R. A. (1988) Annu. Rev. Plant Physiol. Plant Mol. Biol., 39, 439-473.

    Google Scholar 

  5. Selivankina, S. Yu., Romanko, E. G., Novikova, G. V., Muromtseva, D. G., and Kulaeva, O. N. (1988) Fiziol. Rast., 35, 266-274.

    Google Scholar 

  6. Korchuganova, E. E., Abubakirova, M. R., and Karimova, F. G. (1998) in Reception and Intracellular Signaling: Materials Int. Conf., Pushchino, pp. 230-233.

  7. Karimova, F. G., and Zhukov, S. N. (1991) Dokl. Akad. Nauk SSSR, 316, 1277-1279.

    Google Scholar 

  8. Bolwell, G. P. (1995) Trends Biochem. Sci., 20, 492-495.

    Google Scholar 

  9. Kurosaki, F., and Nishi, A. (1993) Arch. Biochem. Biophys., 302, 144-151.

    Google Scholar 

  10. Leprince, O., Hendry, A. F., and McKersie, A. (1993) Seed Sci. Res., 3, 231-246.

    Google Scholar 

  11. McCarty, D. R. (1995) Annu. Rev. Plant Physiol. Plant Mol. Biol., 46, 71-93.

    Google Scholar 

  12. Mascarenhas, J. P., and Altschuler, M. (1985) in Changes in Eukaryotic Gene Expression in Response to Environmental Stress (Atkinson, B. G., and Walden, D. B., eds.) Academic Press, Orlando, pp. 315-326.

    Google Scholar 

  13. Sokolov, O. A., Semikhov, V. F., Loboda, V. M., and Sosnovskaya, E. V. (1975) Agrokhimiya, 7, 137-143.

    Google Scholar 

  14. Sokolov, O. A., Semikhov, V. F., Loboda, V. M., and Sosnovskaya, E. V. (1975) Agrokhimiya, 8, 116-122.

    Google Scholar 

  15. Angelova, V. S., and Kholodova, V. P. (1993) Fiziol. Rast., 40, 889-892.

    Google Scholar 

  16. Lowry, H., Rosebrough, N., Farr, A., and Randall, R. (1951) J. Biol. Chem., 193, 265-275.

    Google Scholar 

  17. Laemmli, N. K. (1970) Nature, 227, 680-685.

    Google Scholar 

  18. Weber, K., and Osborn, M. (1969) J. Biol. Chem., 16, 4406-4412.

    Google Scholar 

  19. Gaal, E., Medgyesi, G., and Vereczskey, L. (1982) Electrophoresis in Separation of Biological Macromolecules [Russian translation], Mir, Moscow.

    Google Scholar 

  20. Bush, E. T. (1968) Int. J. Ahhl. Radiat. Isotop., 19, 447-452.

    Google Scholar 

  21. Maksyutova, N. N., Viktorova, L. V., and Tarchevskii, I. A. (1989) Fiziol. Biokhim. Kul't. Rast., 21, 582-586.

    Google Scholar 

  22. Maksyutova, N. N., Viktorova, L. V., and Karimova, F. G. (1995) Fiziol. Biokhim. Kul't. Rast., 27, 292-297.

    Google Scholar 

  23. Yavorskaya, V. K., Dragovoz, I. V., Markova, V. E., and Fedenko, E. P. (1991) Dokl. Akad. Nauk SSSR, 321, 859-862.

    Google Scholar 

  24. Tarchevskii, I. A., Grechkin, A. N., Karimova, F. G., Korchuganova, E. E., Maksyutova, N. N., Mukhtarova, L. Sh., Yakovleva, V. G., Fazliev, F. N., Yagusheva, M. R., Palikh, E., and Khokhlova, L. P. (1999) in Kazan State University Collection of Works “Planes of Collaboration” [in Russian], Yunipress, Kazan, pp. 299-309.

    Google Scholar 

  25. Karimova, F. G., Leonova, S. A., Gordon, L. Kh., and Fil'chenkova, V. I. (1993) Fiziol. Biokhim. Kul't. Rast., 25, 362-367.

    Google Scholar 

  26. Losovaya, V. V., Gorshkova, T. A., Karimova, F. G., Raimanov, I. I., Tarchevskaya, O. I., and Khusainov, M. V. (1988) in Proc. 7th Int. Protoplast Symp., Wageningen, Netherlands (Puite, K. I., et al., eds.) Kluwer Academic Publishers, Wageningen, pp. 149-150.

    Google Scholar 

  27. Bartels, D., Schneider, K., Terstappen, G., Piatkowski, D., and Salamini, F. (1990) Planta, 181, 27-34.

    Google Scholar 

  28. Quarrie, S. A., Steed, A., Lazic-Jancic, V., and Kovacevic, D. (1992) in Progress in Plant Growth Regulation 1991 (Karssen, C. M., van Loon, L. C., and Vreugdenhil, D., eds.) Kluwer Academic Publishers, Dordrecht, pp. 770-777.

    Google Scholar 

  29. Carrera, E., and Prat, S. (1988) Plant J., 15, 765-771.

    Google Scholar 

  30. Mahady, G. B., Liu, C., and Beecher, C. W. (1998) Phytochemistry, 48, 93-102.

    Google Scholar 

  31. Nambara, E., Kawaide, H., Kamiya, Y., and Naito, S. (1998) Plant Cell Physiol., 39, 858-864.

    Google Scholar 

  32. Viktorova, L. V., Maksyutova, N. N., Kuz'mina, G. G., and Ionov, E. F. (1995) Fiziol. Biokhim. Rast., 27, 26-30.

    Google Scholar 

  33. Tarchevskii, I. A. (2000) Fiziol. Rast., 47, 231-242.

    Google Scholar 

  34. Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M., and Peterman, T. K. (1993) Plant Physiol., 101, 441-450.

    Google Scholar 

  35. Knetsch, M. L. W., Wang, M., Snaar-Jagalska, B. E., and Heimovaara-Dijkstra, S. (1996) Plant Cell, 8, 1061-1067.

    Google Scholar 

  36. Rodriques, P. L. (1998) Plant Mol. Biol., 38, 919-927.

    Google Scholar 

  37. Guan, L., and Scandalios, J. G. (1998) Plant Physiol., 117, 217-224.

    Google Scholar 

  38. Grabov, A., and Blatt, M. R. (1998) Proc. Natl. Acad. Sci. USA, 95, 4778-4783.

    Google Scholar 

  39. MacRobbi, E. A. (1998) Philos. Trans. R. Soc. Lond. B. Biol. Sci., 353, 1475-1488.

    Google Scholar 

  40. Mikami, K., Katagiri, T., Iuchi, S., Yamagushi-Shinozaki, K., and Shinozaki, K. (1998) Plant J., 15, 563-568.

    Google Scholar 

  41. Staxen, I., Pical, C., Montgomery, L. T., Gray, J. E., Hetherington, A. M., and McAinsh, M. R. (1999) Proc. Natl. Acad. Sci. USA, 96, 1779-1784.

    Google Scholar 

  42. Munnik, T., Arisz, S. A., de Vrije, T., and Musgrave, A. G. (1995) Plant Cell, 7, 2197-2210.

    Google Scholar 

  43. Ritchie, S., and Gilroy, S. (1998) Proc. Natl. Acad. Sci. USA, 95, 2697-2702.

    Google Scholar 

  44. Garay-Arroy, A., and Covarrubias, A. A. (1999) Yeast, 15, 879-892.

    Google Scholar 

  45. Godoy, J. A., Lunar, R., Torres-Schumann, S., Moreno, J., Rodrigo, R. M., and Pintor Toro, J. A. (1994) Plant Mol. Biol., 26, 1921-1934.

    Google Scholar 

  46. Yamaguchi-Shinozaki, K., Mundy, J., and Chua, N. H. (1990) Plant Mol. Biol., 14, 29-39.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maksyutova, N.N., Viktorova, L.V. A Comparative Study of the Effect of Abscisic Acid and cAMP on Protein Synthesis in Wheat Caryopses under Drought Conditions. Biochemistry (Moscow) 68, 424–428 (2003). https://doi.org/10.1023/A:1023651913998

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023651913998

Navigation