Skip to main content
Log in

The Anisotropic Schwarzschild-Type Problem, Main Features

  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

The two-body problem associated to an anisotropic Schwarzschild-type field is being tackled. Both the motion equations and the energy integral are regularized via McGehee-type transformations. The regular vector field exhibits nice symmetries that form a commutative group endowed with an idempotent structure. The physically fictitious flows on the collision and infinity manifolds, as well as the local flows in the neighbourhood of these manifolds, are fully described. Homothetic, spiral, and oscillatory orbits are pointed out. Some features of the global flow are depicted for all possible levels of energy. For the negative-energy case, few things have been done. The positive-energy global flow does not have zero-velocity curves; every orbit is of the type ejection – escape or capture – collision. In the zero-energy case, the collision and infinity manifolds have a very similar structure. The existence of eight trajectories that connect the equilibria on these manifolds is proved. The projectability of the zero-energy global flow completes the full understanding of the problem in this case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Brumberg, V. A.: 1991, Essential Relativistic Celestial Mechanics, Adam Hilger, Bristol, Philadelphia, New York.

    Google Scholar 

  • Casasayas, J. and Llibre, J.: 1984, 'Qualitative analysis of the anisotropic Kepler problem', Mem. Amer. Math. Soc. Vol. 52, No. 312, American Mathematical Society, Providence, RI.

    Google Scholar 

  • Chandrasekhar, S.: 1983, TheMathematical Theory of Black Holes, Oxford University Press, Oxford.

    Google Scholar 

  • Craig, S., Diacu, F. N., Lacomba, E. A. and Perez, E.: 1999, 'On the anisotropic Manev problem', J. Math. Phys. 40, 1359-1375.

    Google Scholar 

  • Delgado, J., Diacu, F. N., Lacomba, E. A., Mingarelli, A., Mioc, V., Perez, E. and Stoica, C.: 1996, 'The global flow of the Manev problem', J. Math. Phys. 37, 2748-2761.

    Google Scholar 

  • Devaney, R. L.: 1978, 'Collision orbits in the anisotropic Kepler problem', Invent. Math. 45, 221-251.

    Google Scholar 

  • Devaney, R. L.: 1981, 'Singularities in classical mechanical systems'. In: Ergodic Theory and Dynamical Systems, Vol. 1, Birkhäuser, Boston, pp. 211-333.

    Google Scholar 

  • Diacu, F. N.: 1992, Singularities of the N-Body Problem. An Introduction to Celestial Mechanics, Les Publications CRM, Montréal.

    Google Scholar 

  • Diacu, F. N., Mingarelli, A., Mioc, V. and Stoica, C.: 1995, 'The Manev two-body problem: quantitative and qualitative theory'. In: R. P. Agarwal (ed.), Dynamical Systems and Applications, World Scientific Series in Applicable Analysis, Vol. 4, World Scientific, Singapore, pp. 213-227.

    Google Scholar 

  • Diacu, F. N., Mioc, V. and Stoica, C.: 2000, 'Phase-space structure and regularization of Manev-type problems', Nonlinear Anal. 41, 1029-1055.

    Google Scholar 

  • Eddington, A. S.: 1923, Mathematical Theory of Relativity, Cambridge University Press, Cambridge.

    Google Scholar 

  • Gutzwiller, M. C.: 1971, 'Periodic orbits and classical quantization conditions', J. Math. Phys. 12, 343-358.

    Google Scholar 

  • Gutzwiller, M. C.: 1973, 'The anisotropic Kepler problem in two dimensions', J. Math. Phys. 14, 139-152.

    Google Scholar 

  • Gutzwiller, M. C.: 1977, 'Bernoulli sequences and trajectories in the anisotropic Kepler problem', J. Math. Phys. 18, 806-823.

    Google Scholar 

  • Gutzwiller, M. C.: 1990, Chaos in Classical Systems and Quantum Mechanics, Springer-Verlag, New York.

    Google Scholar 

  • McGehee, R.: 1974, 'Triple collision in the collinear three-body problem', Invent. Math. 27, 191-227.

    Google Scholar 

  • Maneff, G.: 1924, 'La gravitation et le principe de l'égalité de l'action et de la réaction', C. R. Acad. Sci. Paris 178, 2159-2161.

    Google Scholar 

  • Maneff, G.: 1925, 'Die Gravitation und das Prinzip von Wirkung und Gegenwirkung', Z. Phys. 31, 786-802.

    Google Scholar 

  • Maneff, G.: 1930a, 'Le principe de la moindre action et la gravitation', C. R. Acad. Sci. Paris 190, 963-965.

    Google Scholar 

  • Maneff, G.: 1930b, 'La gravitation et l'énergie au zéro', C. R. Acad. Sci. Paris 190, 1374-1377.

    Google Scholar 

  • Mioc, V. and Radu, E.: 1992, 'Orbits in an anisotropic radiation field', Astron. Nachr. 313, 353-357.

    Google Scholar 

  • Mioc, V. and Stavinschi,M.: 1999, 'On Maxwell's (n+1)-body problem in the Manev-type field and on the associated restricted problem', Phys. Scripta 60, 483-490.

    Google Scholar 

  • Mioc, V. and Stoica, C.: 1995a, 'Discussion et résolution complète du problème des deux corps dans le champ gravitationnel de Maneff', C. R. Acad. Sci. Paris, sér. I 320, 645-648.

    Google Scholar 

  • Mioc, V. and Stoica, C.: 1995b, 'Discussion et résolution complète du problème des deux corps dans le champ gravitationnel de Maneff (II)', C. R. Acad. Sci. Paris, sér. I 321, 961-964.

    Google Scholar 

  • Saslaw, W. C.: 1978, 'Motion around a source whose luminosity changes', Astrophys. J. 226, 240-252.

    Google Scholar 

  • Savedoff, M. P. and Vila, S.: 1964, 'Dynamic effects of variable G or variable mass', Astron. J. 69, 242-245.

    Google Scholar 

  • Schwarzschild, K.: 1916, 'Ñber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie', Sitzber. Preuss. Akad. Wiss. Berlin, 189-196.

  • Stoica, C. and Mioc, V.: 1997, 'The Schwarzschild problem in astrophysics', Astrophys. Space Sci. 249, 161-173.

    Google Scholar 

  • Vinti, J. P.: 1972, 'Possible effects of anisotropy of G on celestial orbits', Celest. Mech. 6, 198-207.

    Google Scholar 

  • Will, C.: 1971, 'Relativistic gravity in the solar system. II. Anisotropy in the Newtonian gravitational constant', Astrophys. J. 169, 141-155.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mioc, V., Pérez-Chavela, E. & Stavinschi, M. The Anisotropic Schwarzschild-Type Problem, Main Features. Celestial Mechanics and Dynamical Astronomy 86, 81–106 (2003). https://doi.org/10.1023/A:1023648616687

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023648616687

Navigation