Skip to main content
Log in

Comparative Kinetic Study of D-Glucose Oxidation by Ruthenium(III) Compounds Catalyzed by FAD-Dependent Glucose Oxidase and PQQ-Dependent Glucose Dehydrogenase

  • Published:
Biochemistry (Moscow) Aims and scope Submit manuscript

Abstract

The comparative kinetic study of two glucose oxidizing enzymes, FAD-dependent glucose oxidase and PQQ-dependent glucose dehydrogenase, is presented in the artificial electron transfer mediator system based on ruthenium(III) compounds. It is demonstrated that FAD-dependent glucose oxidase and PQQ-dependent glucose dehydrogenase follow Michaelis kinetics in the D-glucose/ruthenium(III) system. PQQ-dependent glucose dehydrogenase is more active than FAD-dependent glucose oxidase in the process of D-glucose oxidation by ruthenium(III) compounds, this being due to the different catalytic mechanisms of these enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Turner, A. P. F., Karube, I., and Wilson, G. S. (1987) Biosensors. Fundamentals and Applications, Oxford University Press, Oxford.

    Google Scholar 

  2. Gorton, L. (1995) Electroanalysis, 7, 23-45.

    Google Scholar 

  3. Ryabov, A. D., Kurova, V. S., Goral, V. N., Reshetova, M. D., Razumiene, J., Simkus, R., and Laurinavicius, V. (1999) Chem. Mater., 11, 600-604.

    Google Scholar 

  4. Schuhmann, W., Zimmermann, H., Habermueller, K., and Laurinavicius, V. (2000) Faraday Discuss, 16, 000-000.

    Google Scholar 

  5. Ryabov, A. D., Firsova, Yu. N., Ershov, A. Yu., and Dementiev, I. A. (1999) JBIC, 4, 175-182.

    Google Scholar 

  6. Ryabova, E. S., Goral, V. N., Csoregi, E., Mattiasson, B., and Ryabov, A. D. (1999) Angew. Chem. Int. Ed. Engl., 38, 804-807.

    Google Scholar 

  7. Goral, V. N., Csoregi, E., Mattiasson, B., and Ryabov, A. D. (1999) Mendeleev Commun. Electronic Version, 5, 171-212.

    Google Scholar 

  8. Ryabov, A. D., Sukharev, V. S., Alexandrova, L., Lagadec, R. L., and Pfeffer, M. (2001) Inorg. Chem., 40, 6529-6532.

    Google Scholar 

  9. Hauge, J. (1964) J. Biol. Chem., 239, 3630-3639.

    Google Scholar 

  10. Duine, J. A., and Frank, J. (1978) Biochem. J., 187, 221-226.

    Google Scholar 

  11. Sailsbury, S., Forrest, H., Cruse, W., and Kennard, O. (1979) Nature (London), 280, 843-844.

    Google Scholar 

  12. Diune, J., Frank, J., and Verwiel, P. (1980) Eur. J. Biochem., 108, 187-192.

    Google Scholar 

  13. Davidson, V. L. (1993) Principle and Applications of Quinoproteins, Marcel Dekker, New York.

    Google Scholar 

  14. Dewanti, R., and Duine, J. (2000) Biochemistry, 39, 9384-9392.

    Google Scholar 

  15. Ameyama, M., Nonobe, M., Hayashi, M., Shinadawa, E., Matsushita, K., and Adachi, O. (1985) Agric. Biol. Chem., 48, 1227-1231.

    Google Scholar 

  16. Matshushita, K., Nonobe, M., Shinadawa, E., Matsushita, K., and Ameyama, M. (1987) J. Bacteriol., 169, 205-209.

    Google Scholar 

  17. Marcinkeviciene, L., Bachamatova, I., Semenaite, R., Rudomanskis, R., Brazenas, G., Meskiene, R., and Meskus, R. (1999) Biotechnol. Lett., 21, 187-192.

    Google Scholar 

  18. Olsthoorn, A. J. J., and Duine, J. A. (1998) Biochemistry, 37, 13854-13861.

    Google Scholar 

  19. Ryabov, A. D., Firsova, Y. N., Goral, V. N., Sukharev, V. S., Ershov, A. Y., LejBolle, C., Bjerrum, M., and Eliseev, A. V. (2001) Inorg. Reaction Mechanisms, 00, 1-18.

    Google Scholar 

  20. Ryabov, A. D., Firsova, Y. N., Ershov, A. Y., and Dementiev, I. A. (1999) JBIC, 4, 175-182.

    Google Scholar 

  21. Durham, B., Walsh, J. L., Carter, C. L., and Meyer, T. J. (1980) Inorg. Chem., 19, 860.

    Google Scholar 

  22. Johnson, E. C., Sullivan, B. P., Salmon, D. J., Adeyemi, S. A., and Meyer, T. J. (1976) Inorg. Chem., 17, 2211.

    Google Scholar 

  23. Ryabov, A. D., Firsova, Y. N., and Nelen', M. I. (1996) Appl. Biochem. Biotechnol., 61, 25-37.

    Google Scholar 

  24. Marcus, R. A., and Sutin, N. (1985) Biochim. Biophys. Acta, 811, 265.

    Google Scholar 

  25. Cozier, G. E., Salleh, R. A., and Anthony, C. (1999) Biochem. J., 340, 369-647.

    Google Scholar 

  26. Wilson, R., and Turner, A. P. F. (1992) Biosensors & Bioelectronics, 7, 165-185.

    Google Scholar 

  27. Kulis, J., and Cenas, N. (1983) Biochim. Biophys. Acta, 744, 57.

    Google Scholar 

  28. Hauge, J. P. (1960) Biochim. Biophys. Acta, 45, 265-269.

    Google Scholar 

  29. Osthoom, A. J. J., and Diune, J. A. (1986) Arch. Biochem. Biophys., 336, 42-48.

    Google Scholar 

  30. Dokter, P., Wielink, J. E., Kleef, M. A. G., and Diune, J. A. (1988) Biochem. J., 254, 131-138.

    Google Scholar 

  31. Sober, H. A. (1970) Handbook of Biochemistry, CRC Press, Cleveland, OH.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanova, E.V., Ershov, A.Y., Laurinavičius, V. et al. Comparative Kinetic Study of D-Glucose Oxidation by Ruthenium(III) Compounds Catalyzed by FAD-Dependent Glucose Oxidase and PQQ-Dependent Glucose Dehydrogenase. Biochemistry (Moscow) 68, 407–415 (2003). https://doi.org/10.1023/A:1023647813089

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023647813089

Navigation