Skip to main content
Log in

Harmful Algal Blooms in South Carolina Residential and Golf Course Ponds

  • Published:
Population and Environment Aims and scope Submit manuscript

Abstract

The South Carolina coastal zone is among the fastest growing areas in the U.S., and population epicenters are marked by dense brackish water pond (lagoon) coverage associated with housing complexes and golf courses. Surveillance efforts in 2001–2002 documented the widespread occurrence of several types of potentially or measurably toxic harmful algal blooms (HABs) in these ponds. These man-made retention ponds were constructed in order to serve as a buffer between developed areas and open estuaries or for aesthetic reasons. However, the combination of restricted tidal flow and nutrient and/or contaminant deposition creates a stimulatory environment for potential HAB formation. These discoveries introduce the need to consider mitigation measures to existing ponds and HAB preventive strategies for future pond construction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Anderson, D. M. (1989). Toxic algal blooms and red tides: A global perspective. In T. Okaichi, D. M. Anderson, & T. Nemoto (Eds.), Red Tides: Biology, Environmental Science and Toxicology (pp. 11-16). New York: Elsevier Science.

    Google Scholar 

  • Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries, 25, 704-726.

    Google Scholar 

  • Anderson, M. E. (1985). Determination of glutathione and glutathione disulfide in biological samples. Methods in Enzymology, 113, 548-555.

    Google Scholar 

  • Bailey, W. P. (1996). Population trends in the coastal area, concentrating on South Carolina. In F. J. Vernberg, W. B. Vernberg, & T. Siewicki (Eds.), Sustainable Development in the Southeastern Coastal Zone (pp. 55-73). Columbia, South Carolina: University of South Carolina Press.

    Google Scholar 

  • Berard A., & Benninghoff, C. (2001). Pollution-induced community tolerance (PICT) and seasonal variations in the sensitivity of phytoplankton to atrazine in nanocosms. Chemosphere, 45, 427-437.

    Google Scholar 

  • Biddanda, B., & Benner, R. (1997). Carbon, nitrogen, and carbohydrate fluxes during the production of particulate and dissolved organic matter by marine phytoplankton. Limnology and Oceanography, 42, 506-518.

    Google Scholar 

  • Bricker, S. B., Clement, C. G., Pirhalla, D. E., Orlando, S. P., & Farrow, D. R. G. (1999). National Estuarine Eutrophication Assessment: Effects of Nutrient Enrichment in the Nation's Estuaries. Silver Spring, Maryland: National Oceanic and Atmospheric Administration, National Ocean Service, Special Projects Office and the National Centers for Coastal Ocean Science.

    Google Scholar 

  • Burkholder, J. M. (2001). Eutrophication and oligotrophication. In S. Levin (Ed.), Encyclopedia of Biodiversity, Volume 2 (pp. 649-670). New York: Academic Press.

    Google Scholar 

  • Burkholder, J. M., & Glasgow, H. B. Jr. (1997). The ichthyotoxic dinoflagellate, Pfiesteria piscicida: Behavior, impacts, and environmental controls. Limnology and Oceanography, 42, 1052-1075.

    Google Scholar 

  • Burkholder, J. M., Glasgow, H. B. Jr., & Hobbs, C. W. (1995). Fish kills linked to a toxic ambush-predator dinoflagellate: distribution and environmental conditions. Marine Ecology Progress Series, 124, 43-61.

    Google Scholar 

  • Carlsson, P., & Granéli, E. (1998). Utilization of dissolved organic matter (DOM) by phytoplankton, including harmful species. In D. M. Anderson, A. D. Cembella, & G. M. Hallegraeff (Eds.), Physiological Ecology of Harmful Marine Phytoplankton (pp. 509-524). Paris: UNESCO.

    Google Scholar 

  • Carlsson, P., Granéli, E., & Segatto, A. Z. (1999). Cycling of biologically available nitrogen in riverine humic substances between marine bacteria, a heterotrophic nanoflagellate and a photosynthetic dinoflagellate. Aquatic Microbial Ecology, 18, 23-36.

    Google Scholar 

  • CENR. (2000). National Assessment of Harmful Algal Blooms in U.S. Waters. Washington, D.C.: National Science and Technology Council Committee on Environment and Natural Resources.

    Google Scholar 

  • D'Elia, C. F., Steudler, P. A., & Corwin, N. (1977). Determination and total nitrogen in aqueous samples using persulfate digestion. Limnology and Oceanography, 22, 760-764.

    Google Scholar 

  • DeLorenzo, M. E., Lauth, J., Pennington, P. L., Scott, G. I., & Ross, P. E. (1999a). Atrazine effects on the microbial food web in tidal creek mesocosms. Aquatic Toxicology, 46, 241-251.

    Google Scholar 

  • DeLorenzo, M. E., Scott, G. I., & Ross, P. E. (1999b). Effects of the agricultural pesticides atrazine, deethylatrazine, endosulfan, and chlorpyrifos on an estuarine microbial food web. Environmental Toxicology and Chemistry, 18, 2824-2835.

    Google Scholar 

  • DeLorenzo, M. E., Scott, G. I., & Ross, P. E. (2001). Toxicity of pesticides to aquatic microorganisms: A review. Environmental Toxicology and Chemistry, 20, 84-98.

    Google Scholar 

  • Doblin, M. A., Blackburn, S. I., & Hallegraeff, G. M. (1999). Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. Journal of Experimental Marine Biology and Ecology, 236, 33-47.

    Google Scholar 

  • Edvardsen, B., & Paasche, E. (1998). Bloom dynamics and physiology of Prymnesium and Chrysochromulina. In D. M. Anderson, A. D. Cembella, & G. M. Hallegraeff (Eds.), Physiological Ecology of Harmful Marine Phytoplankton (pp. 193-208). Paris: UNESCO.

    Google Scholar 

  • GEOHAB (2001). Global Ecology and Oceanography of Harmful Algal Blooms, Science Plan. P. Glibert & G. Pitcher (Eds.). Baltimore and Paris: SCOR and IOC.

    Google Scholar 

  • Glasgow, H. B. Jr., Burkholder, J. M., Mallin, M. A., Deamer-Melia, N. J., & Reed, R. E. (2001). Field ecology of toxic Pfiesteria complex species and a conservative analysis of their role in estuarine fish kills. Environmental Health Perspectives (supplement 5), 109, 715-730.

    Google Scholar 

  • Glibert, P. M., Magnien, R., Lomas, M. W., Alexander, J., Fan, C., Haramoto, E., Trice, M., and Kana, T. M. (2001). Harmful algal blooms in the Chesapeake and coastal bays of Maryland, USA: Comparison of 1997, 1998, and 1999 events. Estuaries, 24, 875-883.

    Google Scholar 

  • Glibert, P. M., & Terlizzi, D. E. (1999). Cooccurrence of elevated urea levels and dinoflagellate blooms in temperate estuarine aquaculture ponds. Applied and Environmental Microbiology, 65, 5594-5596.

    Google Scholar 

  • Hallegraeff, G. M. (1993). A review of harmful algal blooms and their apparent global increase. Phycologia, 32, 79-99.

    Google Scholar 

  • Ittekot, V., Brockmann, U., Michaelis, W., & Degens, E. T. (1981). Dissolved free and combined carbohydrates during a phytoplankton bloom in the northern North Sea. Marine Ecology Progress Series, 4, 299-305.

    Google Scholar 

  • Kempton, J. W., Lewitus, A. J., Deeds, J. R., Law, J. McH., & Place, A. R. (2002). Toxicity of Karlodinium micrum (Dinophyceae) associated with a fish kill in a South Carolina brackish retention pond. Harmful Algae, 1, 233-241.

    Google Scholar 

  • Keppler, C. J., & Ringwood, A. H. (2001). Expression of p-glycoprotein in southeastern oysters, Crassostrea virginica. Marine Environmental Research, 52, 81-96.

    Google Scholar 

  • Khan, S., Arakawa, O., & Onoue, Y. (1996). Neurotoxin production by a chloromonad Fibrocapsa japonica (Raphidophyceae). Journal of the World Aquaculture Society, 27, 254-263.

    Google Scholar 

  • Khan, S., Arakawa, O., & Onoue, Y. (1997). Neurotoxins in a toxic red tide of Heterosigma akashiwo (Raphidophyceae) in Kagoshima Bay, Japan. Aquaculture Research, 28, 9-14.

    Google Scholar 

  • Kondo, K., Seike, Y., & Date, Y. (1990). Red tides in the brackish Lake Nakanoumi (III) The stimulative effects of organic substances in the interstitial water of bottom sediments and in the excreta from Skeletonema costatum on the growth of Prorocentrum minimum. Bulletin of the Plankton Society of Japan, 37, 34-47.

    Google Scholar 

  • Lewitus, A. J., Burkholder, J. M., Glasgow, H. B. Jr., Glibert, P. M., Willis, B. M., Hayes, K. C., & Burke, M. K. (1999). Mixotrophy and nutrient uptake by Pfiesteria piscicida (Dinophyceae). Journal of Phycology, 35, 1430-1437.

    Google Scholar 

  • Lewitus, A. J., Hayes, K. C., Gransden, S. G., Glasgow, H. B. Jr., Burkholder, J. M., Glibert, P. M., & Morton, S. L. (2001). Ecological characterization of a widespread Scrippsella red tide in South Carolina estuaries: a newly observed phenomenon. In G. M. Hallegraeff, S. Blackburn, C. Bolch, & R. Lewis (Eds.), Proceedings of the Ninth International Conference on Harmful Algal Blooms (pp. 129-132). Paris: IOC UNESCO.

    Google Scholar 

  • Lewitus, A. J., Hayes, K. C., Willis, B. M., Burkholder, J. M., Glasgow, H. B. Jr., Holland, A. F., Maier, P., Rublee, P. A., & Magnien, R. (2002). Low abundance of the dinoflagellates, Pfiesteria piscicida, P. shumwayae, and Cryptoperidiniopsis spp. in South Carolina estuaries: Relevance as reference sites to areas impacted by Pfiesteria toxic events. Estuaries, 25, 586-597.

    Google Scholar 

  • Lewitus, A. J., & Holland, A. F. (2003). Initial results from a multi-institutional collaboration to monitor harmful algal blooms in South Carolina. Environmental Monitoring and Assessment, 81, 361-371.

    Google Scholar 

  • Lewitus, A. J., & Kana, T. M. (1994). Responses of estuarine phytoplankton to exogenous glucose: Stimulation versus inhibition of photosynthesis and respiration. Limnology and Oceanography, 39, 182-189.

    Google Scholar 

  • Lewitus, A. J., & Kana, T. M. (1995). Light respiration in six estuarine phytoplankton clones: contrasts under autotrophic and mixotrophic growth conditions. Journal of Phycology, 31, 754-761.

    Google Scholar 

  • Lewitus, A. J., Koepfler, E. T., & Pigg, R. (2000). Use of dissolved organic nitrogen by a salt marsh phytoplankton bloom community. Archives of Hydrobiology Special Issues on Advances in Limnology, 55, 441-456.

    Google Scholar 

  • Li, A., Stoecker, D. K., & Coats, D. W. (2000). Spatial and temporal aspects of Gyrodinium galatheanum in Chesapeake Bay: distribution and mixotrophy. Journal of Plankton Research, 22, 2105-2124.

    Google Scholar 

  • Lomas, M. W., Glibert, P. M., Clougherty, D. A., Huber, D. A., Jones, J., Alexander, J., & Haramoto, E. (2001). Elevated organic nutrient ratios associated with brown tide blooms of Aureococcus anophagefferens (Pelagophyceae). Journal of Plankton Research, 23, 1339-1344.

    Google Scholar 

  • Lowe, D. M., Moore, M. N., & Evans, B. M. (1992). Contaminant impact on interactions of molecular probes with lysosomes in living hepatocytes from dab Limanda limanda. Marine Ecology Progress Series, 91, 135-140.

    Google Scholar 

  • Lund, J. W. G., Kipling, C., & LeCren, E. D. (1958). The inverted microscope method of estimating algal numbers and the statistical basis of estimates by counting. Hydrobiologia 11, 143-170.

    Google Scholar 

  • Mallin, M. A., & Wheeler, T. L. (2000). Nutrient and fecal coliform discharge from coastal North Carolina golf courses. Journal of Environmental Quality, 29, 979-986.

    Google Scholar 

  • Nielsen, M. V. (1993). Toxic effect of the marine dinoflagellate Gymnodinium galatheanum on juvenile cod Gadus morhua. Marine Ecology Progress Series, 95, 273-277.

    Google Scholar 

  • Paerl, H. W. (1997). Coastal eutrophication and harmful algal blooms: Importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnology and Oceanography, 42, 1152-1165.

    Google Scholar 

  • Pennington, P. L., & Scott, G. I. (2001). Toxicity of atrazine to the estuarine phytoplankter Pavlova sp (Prymnesiophyceae): Increased sensitivity after long-term, low-level population exposure. Environmental Toxicology and Chemistry, 20, 2237-2242.

    Google Scholar 

  • Redfield, A. C. (1958). The biological control of chemical factors in the environment. American Scientist, 46, 205-22.

    Google Scholar 

  • Ringwood, A. H., Conners, D., & Hoguet, J. (1998). The effects of natural and anthropogenic stressors on lysosomal destabilization in oysters, Crassostrea virginica. Marine Ecology Progress Series, 166, 163-171.

    Google Scholar 

  • Ringwood, A. H., Conners, D. E., Keppler, C. J., & Dinovo, A. (1999). Biomarker studies with juvenile oysters (Crassostrea virginica) deployed in-situ. Biomarkers, 4, 400-414.

    Google Scholar 

  • Smayda, T. J. (1989). Primary production and the global epidemic of phytoplankton blooms in the sea: a linkage? In E.M. Cosper, V. M. Bricelj, & E. J. Carpenter (Eds.), Novel Phytoplankton Blooms (pp. 449-484). New York: Coastal and Estuarine Studies No. 35, Springer-Verlag.

    Google Scholar 

  • Smayda, T. J. (1990). Novel and nuisance phytoplankton blooms in the sea: Evidence for a global epidemic. In E. Granéli, B. Sundström, L. Edler, & D. M. Anderson (Eds.), Toxic Marine Phytoplankton (pp. 29-40). New York: Elsevier Science.

    Google Scholar 

  • Smayda, T. J. (1998). Ecophysiology and bloom dynamics of Heterosigma akashiwo (Raphidophyceae). In D. M. Anderson, A. D. Cembella, & G. M. Hallegraeff (Eds.), Physiological Ecology of Harmful Marine Phytoplankton (pp. 113-131). Paris: UNESCO.

    Google Scholar 

  • Stoecker, D. M. (1999). Mixotrophy among dinoflagellates. Journal of Eukaryotic Microbiology, 46, 397-401.

    Google Scholar 

  • Twiner, M. J., Dixon, S. J., & Trick, C. G. (2001). Toxic effects of Heterosigma akashiwo do not appear to be mediated by hydrogen peroxide. Limnology and Oceanography, 46, 1400-1405.

    Google Scholar 

  • Vernberg, F. J., Scott, G. I., Strozier, S. H., Bemiss, J., & Daugomah, J. W. (1996). In F. J. Vernberg, W. B. Vernberg, & T. Siewicki (Eds.), Sustainable Development in the Southeastern Coastal Zone (pp. 221-239). Columbia, South Carolina: University of South Carolina Press.

    Google Scholar 

  • Vernberg, F. J., & Vernberg, W. B. (2001). The Coastal Zone. Coumbia, South Carolina: University of South Carolina Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lewitus, A.J., Schmidt, L.B., Mason, L.J. et al. Harmful Algal Blooms in South Carolina Residential and Golf Course Ponds. Population and Environment 24, 387–413 (2003). https://doi.org/10.1023/A:1023642908116

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023642908116

Navigation