Advertisement

Biodiversity & Conservation

, Volume 12, Issue 7, pp 1481–1495 | Cite as

Shading out species richness: edge effect of a pine plantation on the Orthoptera (Tettigoniidae and Acrididae) assemblage of an adjacent dry grassland

  • Georg Bieringer
  • Klaus Peter Zulka
Article

Abstract

Edge effects are increasingly recognised as a threat to interior species, but the influence of edges on open habitats has rarely been addressed so far. We investigated the diversity pattern of the Orthoptera fauna across a habitat edge between a pine plantation and a natural steppe ecosystem. Thirty pitfall traps were positioned along a transect line from 80 m in the forest to 208 m in the grassland at 10 fixed distances from the edge. The orthopteran assemblage of the pine plantation was depauperate in species and individuals and, with a few exceptions, lacked steppe species. We found no increase in species richness at the forest–grassland edge. In the grassland, Orthoptera species numbers increased steadily with increasing distance from the forest edge. Two-phase regression analysis revealed a traceable edge effect up to about 30 m into the grassland. This effect was exclusively caused by an increase in acridid species numbers, while tettigoniid species numbers showed no clear relation to edge distance. Correlation analysis of the habitat variables suggested that this pattern is a result of irradiance and soil temperature sums. Since acridids show species-specific temperature requirements for their development, shading of the soil surface prevents a number of species from completing their life cycle. We suggest that present trends of shrub encroachment and eutrophication of dry grassland habitats in eastern Austria are serious threats for a large part of the orthopteran fauna.

Acrididae Dry grassland Edge effect Orthoptera Pine plantation Tettigoniidae Thermobiology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bedford S.E. and Usher M.B. 1994. Distribution of arthropod species across the margins of farm woodlands. Agriculture, Ecosystems and Environment 48: 295–305.Google Scholar
  2. Berg H.-M. and Zuna-Kratky T. 1997. Rote Listen ausgewählter Tiergruppen Niederösterreichs – Heuschrecken und Fangschrecken (Insecta: Saltatoria, Mantodea). 1. Fassung 1995. Amt der Niederöterreichischen Landesregierung, Abteilung Naturschutz, St. Pölten, Austria.Google Scholar
  3. Bieringer G. and Berg H.-M. 2001. Die Heuschreckenzönosen (Orthoptera) des zentralen Steinfelds im Vergleich mit ausgewählten Trockenrasen des pannonischen Raums in Ostösterreich. Stapfia 77: 175–187.Google Scholar
  4. Bobbink R., Hornung M. and Roelofs J.G.M. 1998. The effects of air-borne nitrogen pollutants on species diversity in natural and semi-natural European vegetation. Journal of Ecology 86: 717–738.Google Scholar
  5. Bortz J. 1993. Statistik fur Sozialwissenschaftler 4. Springer, Berlin, Germany.Google Scholar
  6. Brittingham M.C. and Temple S.A. 1983. Have cowbirds caused forest birds to decline? BioScience 33: 31–34.Google Scholar
  7. Brocksieper R. 1978. Der Einfluß des Mikroklimas auf die Verbreitung der Laubheuschrecken, Grillen und Feldheuschrecken im Siebengebirge und auf dem Rodderberg bei Bonn (Orthoptera: Saltatoria). Decheniana Beihefte (Bonn) 21: 1–141.Google Scholar
  8. Bruckhaus A. 1990. Bedeutung der Temperatur für die Biotopbindung einiger einheimischer Feldheuschreckenarten. Articulata 5: 43–57.Google Scholar
  9. Bruckhaus A. 1992. Ergebnisse zur Embryonalentwicklung bei Feldheuschrecken und ihre Bedeutung für den Biotop-und Artenschutz. Articulata Beiheft 2: 1–115.Google Scholar
  10. Burkey T.V. 1993. Edge effects in seed and egg predation at two neotropical rainforest sites. Biological Conservation 66: 139–143.Google Scholar
  11. Chen J., Franklin J.F. and Spies T.A. 1995. Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forests. Ecological Applications 5: 74–86.Google Scholar
  12. Cherrill A.J. and Begon M. 1989. Timing of life cycles in a seasonal environment: the temperaturedependence of embryogenesis and diapause in a grasshopper (Chorthippus brunneus Thunberg). Oecologia 78: 237–241.Google Scholar
  13. Didham R.K., Hammond P.M., Lawton J.H., Eggleton P. and Stork N.E. 1998. Beetle species responses to tropical forest fragmentation. Ecological Monographs 68: 295–323.Google Scholar
  14. Downie I.S., Coulson J.C. and Butterfield J.E.L. 1996. Distribution and dynamics of surface-dwelling spiders across a pasture-plantation ecotone. Ecography 19: 29–40.Google Scholar
  15. Fink J. 1964. Die Boden Niederösterreichs. Jahrbuch für Landeskunde von Niederösterreich, N.F. 36: 965–988.Google Scholar
  16. Fox B.J., Taylor J.E., Fox M.D. and Williams C. 1997. Vegetation changes across edges of rainforest remnants. Biological Conservation 82: 1–13.Google Scholar
  17. Hänggi A. and Baur B. 1998. The effect of forest edge on ground-living arthropods in a remnant of unfertilized calcareous grassland in the Swiss Jura mountains. Mitteilungen der Schweizerischen Entomologischen Gesellschaft – Bulletin de la société entomologique Suisse 71: 343–354.Google Scholar
  18. Harris L.D. 1988. Edge effects and conservation of biotic diversity. Conservation Biology 2: 330–332.Google Scholar
  19. Helfert B. 1980. Die regulative Wirkung von Photoperiode und Temperatur auf den Lebenszyklus ökologisch unterschiedlicher Tettigoniiden-Arten (Orthoptera, Saltatoria) 1. Teil: Larvalentwicklung, Reproduktion und Lebensdauer der Parentalgeneration. Zoologische Jahrbücher – Abteilung für Systematik, Ökologie und Geographie der Tiere 107: 159–182.Google Scholar
  20. Heller K.-G., Korsunovskaya O., Ragge D.R., Vedenina V., Willemse F., Zhantiev R.D. et al. 1998. Check-list of European Orthoptera. Articulata Beiheft 7: 1–61.Google Scholar
  21. Heublein D. 1983. Räumliche Verteilung, Biotoppräferenzen und kleinräumige Wanderungen der epi-gäischen Spinnenfauna eines Wald-Wiesen-Ökotons. Ein Beitrag zum Thema Randeffekt. Zoologische Jahrbücher – Abteilung für Systematik, Ökologie und Geographie der Tiere 110: 473–519.Google Scholar
  22. Ingrisch S. 1986a. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 1. The effect of temperature on embryonic developement and hatching. Oecologia 70: 606–616.Google Scholar
  23. Ingrisch S. 1986b. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 2. The effect of photoperiod on the induction of an initial diapause. Oecologia 70: 617–623.Google Scholar
  24. Ingrisch S. 1986c. The plurennial life cycles of the European Tettigoniidae (Insecta: Orthoptera). 3. The effect of drought and the variable duration of the initial diapause. Oecologia 70: 624–630.Google Scholar
  25. Ingrisch S. 1996. Fekundität und Entwicklung alpiner Feldheuschrecken (Orthoptera: Acrididae). Mitteilungen der Schweizerischen Entomologischen Gesellschaft 69: 441–455.Google Scholar
  26. Ingrisch S. and Kohler G. 1998. Die Heuschrecken Mitteleuropas. Die Neue Brehm-Bücherei Bd. 629, Westarp Wissenschaften, Magdeburg, Germany.Google Scholar
  27. Joern A. 1982.Vegetation structure and microhabitat selection in grasshoppers (Orthoptera, Acrididae). Southwestern Naturalist 27: 197–209.Google Scholar
  28. Johnston C.A., Pastor J. and Pinay G. 1992. Quantitative methods for studying landscape boundaries. In: Hansen A.J. and di Castri F. (eds), Landscape Boundaries. Consequences for Biotic Diversity and Ecological Flows. Springer, New York, pp. 107–125.Google Scholar
  29. Kaltenbach A. 1970. Zusammensetzung und Herkunft der Orthopterenfauna im pannonischen Raum Österreichs. Annalen des Naturhistorischen Museums in Wien 74: 159–186.Google Scholar
  30. Kapos V. 1989. Effects of isolation on the water status of forest patches in the Brazilian Amazon. Journal of Tropical Ecology 5: 173–185.Google Scholar
  31. Köhler G. 1999. Ökologische Grundlagen von Aussterbensprozessen. Fallstudien an Heuschrecken (Caelifera et Ensifera). Laurenti-Verlag, Bochum, Germany.Google Scholar
  32. Köhler G. and Kopetz A. 1993.Veränderungen in Heuschrecken (Saltatoria) – Assoziationen als Folgen der Verbuschung von Kalktrockenrasen. Archiv für Naturschutz und Landschaftsforschung 32: 147–159.Google Scholar
  33. Kohler G. and Weipert J. 1991. Beiträge zur Faunistik und Ökologie des Naturschutzgebietes, ‘Apfelstad-ter Ried’, Kr. Erfurt-Land. Teil IV. Orthoptera: Saltatoria. Archiv für Naturschutz und Landschaftsforschung 31: 181–195.Google Scholar
  34. Kotze D.J. and Samways M.J. 2001. No general edge effects for invertebrates at Afromontane forest / grassland ecotones. Biodiversity and Conservation 10: 443–466.Google Scholar
  35. Lahti D.C. 2001. The ‘edge effect on nest predation’ hypothesis after 20 years. Biological Conservation 99: 365–374.Google Scholar
  36. Leopold A. 1933. Game Management. Charles Scribner and Sons, New York.Google Scholar
  37. Lovejoy T.E., Bierregaard R.O. Jr, Rylands A.B., Malcolm J.R., Harper C.E., Quintela L.H. et al. 1986. Edge and other effects of isolation on Amazon forest fragments. In: Soulé M.E. (ed.), Conservation Biology. The Science of Scarcity and Diversity. Sinauer Associates, Sunderland, Massachusetts, pp. 257–285.Google Scholar
  38. Magura T., Tóthmérész B. and Molnár T. 2001. Forest edge and diversity: carabids along forest-grassland transects. Biodiversity and Conservation 10: 287–300.Google Scholar
  39. Malcolm J.R. 1994. Edge effects of central Amazonian forest fragments. Ecology 75: 2438–2445.Google Scholar
  40. Matlack G.R. 1993. Microenvironment variation within and among forest edge sites in the eastern United States. Biological Conservation 66: 185–194.Google Scholar
  41. Mucina L. and Kolbeck J. 1993. Festuco-Brometea. In: Mucina L., Grabherr G. and Ellmauer T. (eds), Die Pflanzengesellschaften Österreichs. Teil 1, Anthropogene Vegetation. Gustav Fischer, Jena, Germany, pp. 420–492.Google Scholar
  42. Murcia C. 1995. Edge effects in fragmented forests: implications for conservation. Trends in Ecology and Evolution 10: 58–62.Google Scholar
  43. Neuwirth F. 1989. Klimazonen in Niederösterreich. Wissenschaftliche Schriftenreihe Niederösterreich 84/85: 1–62.Google Scholar
  44. Nickerson D.M., Facey D.E. and Grossman G.D. 1989. Estimating physiological thresholds with continuous two-phase regression. Physiological Zoology 62: 866–887.Google Scholar
  45. Oschmann M. 1973. Untersuchungen zur Biotopbindung der Orthopteren. Faunistische Abhandlungen, Staatliches Museum für Tierkunde Dresden 4: 177–206.Google Scholar
  46. Oschmann M. 1993. Umwelteinflüsse auf die Phänologie der Heuschrecken (Saltatoria). Articulata 8: 31–38.Google Scholar
  47. Paar M., Schramayr G., Tiefenbach M. and Winkler I. 1993. Naturschutzgebiete Österreichs. Band 1: Burgenland, Niederösterreich, Monographie Bd. 38 A, Wien. Umweltbundesamt, Wien, Austria.Google Scholar
  48. Pallmann H., Eichenberger E. and Hasler A. 1940. Eine neue Methode der Temperaturmessung bei ökologischen und bodenkundlichen Untersuchungen. Berichte der Schweizerischen Botanischen Gesellschaft 50: 337–362.Google Scholar
  49. Paton P.W.C. 1994. The effect of edge on avian nest success: how strong is the evidence? Conservation Biology 8: 17–26.Google Scholar
  50. Ranney J.W., Bruner M.C. and Levenson J.B. 1981. The importance of edge in the structure and dynamics of forest islands. In: Burgess R.L. and Sharpe D.M. (eds), Forest Island Dynamics in Man-Dominated Landscapes. Springer, New York, pp. 67–95.Google Scholar
  51. Samways M.J. 1977. Bush cricket interspecific acoustic interactions in the field (Orthoptera, Tettigoniidae). Journal of Natural History 11: 155–168.Google Scholar
  52. Samways M.J. and Moore S.D. 1991. Influence of exotic conifer patches on grasshopper (Orthoptera) assemblages in a grassland matrix at a recreational resort, Natal, South Africa. Biological Conservation 57: 117–137.Google Scholar
  53. Sänger K. 1977. Ñber die Beziehungen zwischen Heuschrecken (Orthoptera: Saltatoria) und der Raumstruktur ihrer Habitate. Zoologische Jahrbücher – Abteilung für Systematik, Ökologie und Geographie der Tiere 104: 433–488.Google Scholar
  54. Sauberer N. and Bieringer G. 2001. Wald oder Steppe? Die Frage der naturlichen Vegetation des Steinfeldes. Stapfia 77: 75–92.Google Scholar
  55. Sauberer N. and Buchner P. 2001. Die Trockenrasen-Vegetation des nördlichen Steinfeldes. Stapfia 77: 113–128.Google Scholar
  56. Saunders D., Hobbs R.J. and Margules C.R. 1991. Biological consequences of ecosystem fragmentation – a review. Conservation Biology 5: 18–32.Google Scholar
  57. Schmitz W. and Volkert E. 1959. Die Messung von Mitteltemperaturen auf reaktionskinetischer Grundlage mit dem Kreispolarimeter und ihre Anwendung in Klimatologie und Bioökologie, speziell in Forst-und Gewässerkunde. Zeiss-Mitteilungen 1: 300–337.Google Scholar
  58. Settele J., Margules C., Poschlod P. and Henle K. 1996. Species Survival in Fragmented Landscapes. Kluwer, Dordrecht, The Netherlands.Google Scholar
  59. Sokal R.R. and Rohlf F.J. 1995. Biometry. The Principles and Practice of Statistics in Biological Research. 3rd edn. Freeman, New York.Google Scholar
  60. Soltani-Taba C. 1970. Vergleich einiger Pararendsinaprofile des Steinfeldes im südlichen inneralpinen Wiener Becken. Mitteilungen der Österreichischen Bodenkundlichen Gesellschaft 14: 1–65.Google Scholar
  61. Topping C.J. and Sunderland K.D. 1992. Limitations to the use of pitfall traps in ecological studies exemplified by a study of spiders in a field of winter-wheat. Journal of Applied Ecology 29: 485–491.Google Scholar
  62. van Wingerden W.K.R.E., Bongers W., Cannemeijer F. and Musters J.M. 1993. Zum Einfluß der Temperatur auf den Jahreszyklus von Chorthippus biguttulus (Orthoptera: Acrididae) in ungedüngten und schwach gedüngten Grasflächen. Articulata 81: 61–75.Google Scholar
  63. van Wingerden W.K.R.E., Musters J.M.C. and Maaskamp F.I.M. 1991. The influence of temperature on the duration of egg development inWest European grasshoppers (Orthoptera: Acrididae). Oecologia 87: 417–423.Google Scholar
  64. van Wingerden W.K.R.E., van Kreveld A.R. and Bongers W. 1992. Analysis of species composition and abundance of grasshoppers (Orthoptera, Acrididae) in natural and fertilized grasslands. Journal of Applied Entomology – Zeitschrift für Angewandte Entomologie 113: 138–152.Google Scholar
  65. Wagner H. 1941. Die Trockenrasengesellschaften am Alpenostrand. Denkschriften der Akademie der Wissenschaften in Wien, mathematisch-naturwissenschaftliche Klasse 104: 1–81.Google Scholar
  66. Walter H. and Lieth H. 1960. Klimadiagramm-Weltatlas. Gustav Fischer, Jena, Germany.Google Scholar
  67. Willott S.J. and Hassall M. 1998. Life-history responses of British grasshoppers (Orthoptera: Acrididae) to temperature change. Functional Ecology 12: 232–241.Google Scholar
  68. Zólyomi B. 1966. Neue Klassifikation der Felsen-Vegetation im pannonischen Raum und der angrenzen-den Gebiete. Bot. Közlem. 53: 49–54.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  1. 1.Institute of Ecology and Nature Conservation, Department of Terrestrial Ecology and Soil ZoologyUniversity of ViennaViennaAustria
  2. 2.LeobersdorfAustria
  3. 3.Institute of Zoology, Department of Evolutionary BiologyUniversity of ViennaViennaAustria

Personalised recommendations