Skip to main content
Log in

Methanol Synthesis from CO2 Using Skeletal Copper Catalysts Containing Co-precipitated Cr2O3 and ZnO

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Skeletal Cu-Cr2O3-ZnO catalysts have been prepared by leaching CuAl2 alloy particles at 273 K using 6.1 M aqueous NaOH solutions containing sodium chromate (Na2CrO4) and sodium zincate (Na2Zn(OH)4). The presence of sodium chromate and sodium zincate in the caustic solution was found to affect the pore structure and surface areas of the resulting catalysts. Both BET and Cu surface areas were increased by increasing the concentration of Na2CrO4 and of Na2Zn(OH)4.

Increasing the Na2CrO4 level from 0 to 0.06 M in a 6.1M NaOH solution containing 0.2M Na2Zn(OH)4 caused the content of ZnO in the catalyst to decrease from 8.8 to 3.0 wt% whilst increasing the Cr2 O3 content from 0 to 1.7 wt%, indicating that the presence of Na2CrO4 in the leach liquor not only resulted in deposition of a Cr compound but also inhibited precipitation of zinc hydroxide onto skeletal Cu catalysts. On the other hand, increasing the concentration of Na2Zn(OH)4 from 0 to 0.6 M in a 6.1 M NaOH solution containing 0.008 M Na2 CrO4 resulted in increasing the ZnO loading from 0 to 8.9wt% with an almost constant content of Cr2 O3 (1.3 ± 0.2%) in the catalysts, revealing that sodium zincate only led to precipitation of zinc hydroxide and did not suppress Cr2O3 formation.

Hydrogenation of CO2 was studied using a gas mixture of 24% CO2 in H2 at a total pressure of 4MPa, space velocities up to 210000L kg-1h-1 and temperatures in the range 493-533K. The catalysts were found to be both highly active and selective for methanol synthesis. This study confirms the role of ZnO in promoting the activity of copper for methanol synthesis from CO2 and improving the selectivity by inhibiting the reverse water-gas shift reaction. The role of Cr2O3 is to improve the structural development of high surface area skeletal copper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Inui, H. Hara, T. Takeguchi and J.B. Kim, Catal. Today 36 (1997) 25.

    Google Scholar 

  2. M. Saito, J. Wu, S. Luo, J. Toyir, M. Takeuchi and T. Watanabe, Greenhouse Gas Control Technologies, eds. P. Riemer, B. Eliasson and A. Wokaun (Elsevier Science, 1999) p. 337.

  3. M. Saito, M. Takeuchi, T. Fujitani, T. Watanabe and Y. Kanai, Special Number/1995 Inter. Chem. Cong. of Pacific Basin Soc. and Tech. Envi. Symp. 06-L, 21 (1995) 83.

    Google Scholar 

  4. I. Fisher, H. C. Woo and A. T. Bell, Catal. Lett. 44(1997) 11.

    Google Scholar 

  5. Y. Nitta, O. Suwata, Y. Ikeda, Y. Okamoto and T. Imanaka, Catal. Lett. 26 (1994) 345.

    Google Scholar 

  6. T. Fugitani and J. Nakamura, Catal. Lett. 56 (1998) 119.

    Google Scholar 

  7. T. Inui, H. Hara, T. Takeguchi and J.B. Kim, Catal. Today 36 (1997) 25.

    Google Scholar 

  8. J. Wu, M. Saito and H. Mabuse, Catal. Lett. 68 (2000) 55.

    Google Scholar 

  9. T. Tagawa, G. Pleizier and Y. Amenomiya, Appl. Catal. 18 (1985) 285.

    Google Scholar 

  10. A.P. Walker, R.M. Lambert, R.M. Nix and J.R. Jennings, J. Catal. 138 (1992) 694.

    Google Scholar 

  11. N. Kanoun, M.P. Astier and G.M. Pajonk, Catal. Lett. 15 (1992) 231.

    Google Scholar 

  12. J. Barrault, Z. Rassoul and M.M. Bettahar, Stud. Surf. Sci. Catal. 61 (1991) 367.

    Google Scholar 

  13. H. Arakawa, K. Sayama, K. Okabe and A. Murakami, Stud. Surf. Sci. Catal. 77 (1993) 389.

    Google Scholar 

  14. T. Inui, M. Suehiro, Y. Saita, T. Miyake and Y. Takegami, Appl. Catal. 2 (1982) 389.

    Google Scholar 

  15. T. Inui and Y. Takegami, Catal. Today 10 (1991) 95.

    Google Scholar 

  16. M. Raney, US Patent, 1,563,587 (1925).

  17. D. Wang, L. Ma, C.J. Jiang, D.L. Trimm, M.S. Wainwright and D.H. Kim, Stud. Surf. Sci. Catal. 101 (1996) 1379.

    Google Scholar 

  18. L. Ma and M.S. Wainwright, Appl. Catal. A: General 187 (1999) 89.

    Google Scholar 

  19. L. Ma, D.L. Trimm and M.S. Wainwright, Topics Catal. 8 (1999) 271.

    Google Scholar 

  20. M.S. Wainwright, Alcohol Fuels, Sydney, paper 8-1 (1978).

  21. W.L. Marsden, M.S. Wainwright and J.B. Friedrich, Ind. Eng. Chem. Prod. Res. Dev. 19(1980) 571.

    Google Scholar 

  22. M.S. Wainwright, W.L. Marsden and J.B. Friedrich, Australian Patent 535073, British Patent app. 20668586, US Patent appl. 4,349,464 and 4,366,260, Canadian Patent 1153354, Japanese Patent 59-14254.

  23. J.B. Friedrich, M.S. Wainwright and D.J. Young, Chem. Eng. Commun. 14 (1982) 1279.

    Google Scholar 

  24. A.J. Bridgewater, M.S. Wainwright and D.J. Young and J.P. Orchard, Appl. Catal. 7 (1983) 369.

    Google Scholar 

  25. J.B. Friedrich, M.S. Wainwright and D.J. Young, J. Catal. 80 (1983) 1.

    Google Scholar 

  26. J.B. Friedrich, M.S. Wainwright and D.J. Young, J. Catal. 80 (1983) 14.

    Google Scholar 

  27. J.B. Friedrich, M.S. Wainwright, D.J. Young and I.F. Boag, Chem. Eng. Commun. 26 (1984) 163.

    Google Scholar 

  28. H.E. Curry-Hyde, D.J. Young and M.S. Wainwright, Appl. Catal. 29 (1987) 31.

    Google Scholar 

  29. H.E. Curry-Hyde, M.S. Wainwright and, D.J. Young, Appl. Catal. 77 (1991) 75.

    Google Scholar 

  30. H.E. Curry-Hyde, M.S. Wainwright and D.J. Young, Appl. Catal. 77 (1991) 89.

    Google Scholar 

  31. H.E. Curry-Hyde, M.S. Wainwright and D.J. Young, Proc. IX Inter. Symp. Alc. Fuels, ISAP-Firenze'91, 1991, p. 49.

  32. H.E. Curry-Hyde, G.D. Sizgek, M.S. Wainwright and D.J. Young, Appl. Catal. A General 95 (1993) 65.

    Google Scholar 

  33. H.E. Curry-Hyde, M.S. Wainwright and D.J. Young, German Patent DE3874537TZ (1993).

  34. L. Ma, D.L. Trimm and M.S. Wainwright, Proc. XII Inter. Symp. Alc. Fuels, ISAF-XII, Beijing, China, 1998, p. 1.

    Google Scholar 

  35. L. Ma, T. Tran and M.S. Wainwright, Proc. XIII Inter. Symp. Alc. Fuels, ISAF-XIII, Stockholm, Sweden, 2000, Part 1, paper 15.

    Google Scholar 

  36. L. Ma, A.J. Smith, T. Tran and M.S. Wainwright, Chem. Eng. Proc. 40 (2001) 59.

    Google Scholar 

  37. L. Ma, T. Tran and M.S. Wainwright, Topics Catal. 22 (2001) 305.

    Google Scholar 

  38. A.J. Smith, P.R. Munroe, T. Tran and M.S. Wainwright, J. Mater. Sci. 36 (2001) 3519.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tam Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, L., Tran, T. & Wainwright, M.S. Methanol Synthesis from CO2 Using Skeletal Copper Catalysts Containing Co-precipitated Cr2O3 and ZnO. Topics in Catalysis 22, 295–304 (2003). https://doi.org/10.1023/A:1023632223754

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023632223754

Navigation