Skip to main content
Log in

Influence of Barrier Material on Spin Splitting Due to Inversion Asymmetry in Heterostructures

  • Published:
Journal of Superconductivity Aims and scope Submit manuscript

Abstract

Influence of barrier material on the spin splitting of conduction subbands in heterostructures because of structure inversion asymmetry (Bychkov–Rashba splitting) is studied. The spin splitting at a vanishing magnetic field is calculated for two heterostructures: InAs/SiO2 and InAs/In0.8Al0.2As, having the same well material InAs but very different barrier materials. It is demonstrated that the barrier material strongly influences the spin splitting of the ground conduction subband in InAs. The spin splittings for both heterostructures are computed as functions of electron density, we obtain the splitting in InAs/SiO2 almost twice larger than that in InAs/In0.8Al0.2As. The influence of spin-dependent part of the boundary conditions on the spin spin splitting is studied and it is shown that for considered heterostructures it changes the splitting up to 25% of its value. It is emphasized that the Bychkov–Rashba spin splitting is not proportional to the average electric field in heterostructure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. A. Bychkov and E. I. Rashba, J. Phys. C. 17, 6039(1984).

    Google Scholar 

  2. S. Datta and B. Das, Appl. Phys. Lett. 56, 665(1990).

    Google Scholar 

  3. P. Pfeffer and W. Zawadzki, Phys. Rev. B 52, R14332(1995).

    Google Scholar 

  4. P. Pfeffer, Phys. Rev. B 59, 15902(1999).

    Google Scholar 

  5. L. Wissinger, U. Roessler, R. Winkler, B. Jusserand, and D. Richards, Phys. Rev. B 58, 15375(1998).

    Google Scholar 

  6. T. Schaepers, G. Engels, J. Lange, T. Klocke, and M. Hollfelder, J. Appl. Phys. 83, 4324(1998).

    Google Scholar 

  7. T. Matsuyama, R. Kuersten, C. Meissner, and U. Merkt, Phys. Rev. B 61, 15588(2000).

    Google Scholar 

  8. F. J. Ohkawa and Y. Uemura, J. Phys. Soc. Jpn. 37, 1325(1974).

    Google Scholar 

  9. P. Pfeffer and W. Zawadzki, Phys. Rev. B 59, R5312(1999).

    Google Scholar 

  10. P. Pfeffer, Phys. Rev. B 55, R7359(1997).

    Google Scholar 

  11. E. E. Matyas and A. G. Karoza, Phys. Stat. Sol. B 111, K45(1982).

    Google Scholar 

  12. B. Wakefield, M. A. G. Halliwell, T. Kerr, D. A. Andrews, G. J. Davies, and D. R. Wood, Appl. Phys. Lett. 44, 341(1984).

    Google Scholar 

  13. Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology (New Series) Vol. III/22a, Madelung, O., ed. (Springer-Verlag, New York, 1987).

    Google Scholar 

  14. S. Tiwari and D. J. Frank, Appl. Phys. Lett. 60, 630(1992).

    Google Scholar 

  15. M. A. Grado-Caffaro and M. Grado-Caffaro, Eur. Phys. J. AP 5, 1(1999).

    Google Scholar 

  16. W. Zawadzki and P. Pfeffer, Phys. Rev. B 64, 235313(2001).

    Google Scholar 

  17. T. Koga, J. Nitta, T. Akazaki, and H. Takayanagi, in Proceedings of 10th Intern Conference on Narrow Gap Semi-Conductor, IPAP Conf. Ser. 2, 2001, p. 227.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeffer, P., Zawadzki, W. Influence of Barrier Material on Spin Splitting Due to Inversion Asymmetry in Heterostructures. Journal of Superconductivity 16, 351–354 (2003). https://doi.org/10.1023/A:1023629823254

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023629823254

Navigation