Multiconformational Method for Analyzing the Biological Activity of Molecular Structures

Abstract

A multiconformational method for analyzing the biological activity of compounds is proposed that combines conformer search algorithms and a 3D‐QSAR receptor modeling procedure. The method allows one to find high‐activity and low‐activity conformers and determine the receptor shape. The biological activity of a substance is determined as a superposition of the activities of its conformers with allowance for their proportions in the substance. Agreement between calculated and experimental conformations and between calculated and experimental biological activities pIC 50%) is demonstrated by the example of agonists of the 5‐HT1A receptor.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. 1.

    H. Kubinyi, Drug Discov. Today, 2, 538-546 (1997).

    Google Scholar 

  2. 2.

    F. Ooms, Curr. Med. Chem., 7, 141-158 (2000).

    Google Scholar 

  3. 3.

    G. G. Wermuth, “Rational approaches to drug design," in: H. D. Holtje and W. Sippl. (eds.), Proc. of the 13th Europ. Symp. on Quantitative Structure-Activity Relationships, QSAR 2000 (Heinrich-Heine-Universität, Dusseldorf, Germany, August 27-September 1, 2000), Prous Science Publishers, Dusseldorf (2001), pp. 3-20.

    Google Scholar 

  4. 4.

    M. Karelson, Molecular Descriptors in QSAR/QSPR, New York, Wiley and Sons (2000).

    Google Scholar 

  5. 5.

    J. Zupan and J. Gasteiger, Neural Networks for Chemistry and Drug Design, Wiley-VCH, Weinheim, Germany (2000).

    Google Scholar 

  6. 6.

    L. Piela, J. Kostrowicki, and H. A. Scheraga, J. Phys. Chem., 93, 3339-3346 (1989).

    Google Scholar 

  7. 7.

    S. Schelstraete and H. Verschelde, J. Phys. Chem. A, 101, 310-315 (1998).

    Google Scholar 

  8. 8.

    R. V. Pappu, R. K. Hart, and J. W. Ponder, J. Phys. Chem. B, 102, 9725-9742 (1998).

    Google Scholar 

  9. 9.

    I. Andricioaei and J. E. Straub, J. Comput. Chem., 19, 1445-1455 (1998).

    Google Scholar 

  10. 10.

    A. M. Doweyko, J. Med. Chem., 31, 1396-1406 (1988).

    Google Scholar 

  11. 11.

    M. Santagati, H. M. Chen, A. Santagati, et al., in: K. Gundertofte and F. S. Jorgensen (eds.), Molecular Modelling and Prediction of Bioactivity, Kluwer Academic/Plenum Publishers, New York (2000), pp. 433-439.

    Google Scholar 

  12. 12.

    V. A. Potemkin, E. V. Bartashevich, M. A. Grishina, and S. Guccione, “Rational approaches to drug design,” in: H. D. Holtje and W. Sippl (eds.), Proc. of the 13th Europ. Symp. on Quantitative Structure-Activity Relationships, QSAR 2000 (Heinrich-Heine-Universität, Dusseldorf, Germany, August 27-September 1, 2000), Prous Science Publishers, Dusseldorf (2001), pp. 349-353.

    Google Scholar 

  13. 13.

    E. V. Bartashevich, V. A. Potemkin, M. A. Grishina, and A.V. Belik, Zh. Strukt. Khim., 43, No. 6, 1128-1133 (2000).

    Google Scholar 

  14. 14.

    M. Modica, M. Santagati, F. Russo, et al., J. Med. Chem., 40, 574 (1997).

    Google Scholar 

  15. 15.

    S. Guccione, A. M. Doweyko, H. M. Chen, et al., J. Comput-Aided Mol. Design, 14, 647-657 (2000).

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Potemkin, V.A., Arslambekov, R.M., Bartashevich, E.V. et al. Multiconformational Method for Analyzing the Biological Activity of Molecular Structures. Journal of Structural Chemistry 43, 1045–1049 (2002). https://doi.org/10.1023/A:1023615231976

Download citation

Keywords

  • Physical Chemistry
  • Inorganic Chemistry
  • Biological Activity
  • Molecular Structure
  • Search Algorithm