Abstract
A function \(f:D \subseteq \mathbb{R}^n \to \mathbb{R}\) is said to be strictly and roughly convexlike with respect to the roughness degree r > 0 (for short, strictly r-convexlike) provided that, for all x 0, x 1 ∈ D satisfying ||x 0 − x 1|| > r, there exists a λ ∈ ]0, 1[ such that
.
The most important property of strictly r-convexlike functions is that the diameter of the set of global minimizers is not greater than r. This property is needed in another paper for obtaining the rough stability of optimal solutions to nonconvex parametric optimization problems. Moreover, if f is supposed to be lower semicontinuous, then each r-local minimizer x*, defined by
is a global minimizer of f. In this paper, necessary and sufficient conditions for a function to be strictly r-convexlike are stated. In particular, the class of strictly γ -convex functions is considered.
This is a preview of subscription content, access via your institution.
References
MALANOWSKI, K., Stability of Solutions to Convex Problems of Optimization, Lecture Notes in Control and Information Sciences, Springer Verlag, Berlin, Germany, Vol. 93, 1987.
PHU, H.X., Zur Stetigkeit der Lösung der adjungierten Gleichung bei Aufgaben der optimalen Steuerung mit Zustandsbeschränkungen, Zeitschrift für Analysis und ihre Anwendungen, Vol. 3, pp. 527-539, 1984.
PICKENHAIN, S., and TAMMER, K., Sufficient Conditions for Local Optimality in Multidimensional Control Problems with State Restrictions, Zeitschrift für Analysis und ihre Anwendungen, Vol. 10, pp. 397-405, 1991.
HU, T. C., KLEE, V., and LARMAN, D., Optimization of Globally Convex Functions, SIAM Journal on Control and Optimization, Vol. 27, pp. 1026-1047, 1989.
PHU, H.X., γ-Subdifferential and γ-Convexity of Functions on the Real Line, Applied Mathematics and Optimization, Vol. 27, pp. 145-160, 1993.
PHU, H.X., γ-Subdifferential and γ-Convexity of Functions on a Normed Space, Journal of Optimization Theory and Applications, Vol. 85, pp. 649-676, 1995.
PHU, H.X., Representation of Bounded Convex Sets by the Rational Convex Hull of Its γ-Extreme Points, Numerical Functional Analysis and Optimization, Vol. 15, pp. 915-920, 1994.
PHU, H.X., BOCK, H. G., and PICKENHAIN, S., Rough Stability of Solutions to Nonconvex Optimization Problems, Optimization, Dynamics, and Economic Analysis, Edited by E. J. Dockner, R. F. Hartl, M. Luptacik, and G. Sorger, Physica Verlag, Heidelberg, Germany, pp. 22-35, 2000.
PHU, H.X., HAI, N. N., and AN, P.T., Piecewise Constant Roughly Convex Functions, Journal of Optimization Theory and Applications (to appear).
HARTWIG, H., Local Boundedness and Continuity of Generalized Convex Functions, Optimization, Vol. 26, pp. 1-13, 1992.
SÖLLNER, B., Eigenschaften γ-grobkonvexer Mengen und Funktionen, Diplomarbeit, Universität Leipzig, Leipzig, Germany, 1991.
PHU, H.X., Six Kinds of Roughly Convex Functions, Journal of Optimization Theory and Applications, Vol. 92, pp. 357-375, 1997.
PHU, H. X., and HAI, N.N., Some Analytical Properties of γ-Convex Functions on the Real Line, Journal of Optimization Theory and Applications, Vol. 91, pp. 671-694, 1996.
FAVARD, J.M., Problèmes d'Extremums Relatifs aux Courbes Convexes, Annales Scientifiques de l'École Normale Supérieure, Vol. 46, pp. 344-369, 1929.
KRIPFGANZ, A., Favard's Fonction Penetrante: A Roughly Convex Function, Optimization, Vol. 38, pp. 329-342, 1996.
BRACH, A., Zur Analysis von Favard's Fonction Penetrante, Diplomarbeit, Universität Leipzig, Leipzig, Germany, 1994.
FOCKE, J., and KLÖTZLER, R., Ein neuer Beitrag zur Fonction Penetrante, Manuscript, Universität Leipzig, Leipzig, 1987.
FOCKE, J., Flächenminimale Inpolygone des Einheitskreises und die Fonction Penetrante von Favard, Manuscript, Universität Leipzig, Leipzig, 1987.
KRIPFGANZ, A., The Generalized Favard Problem, Beiträge zur Algebra und Geometrie, Vol. 36, pp. 185-202, 1995.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Phu, H. Strictly and Roughly Convexlike Functions. Journal of Optimization Theory and Applications 117, 139–156 (2003). https://doi.org/10.1023/A:1023608624625
Issue Date:
DOI: https://doi.org/10.1023/A:1023608624625
- Generalized convexity
- strictly and roughly convexlike functions
- strictly γ-convex functions