Skip to main content
Log in

Field Structure in the Cross Section of a Ferrite Inhomogeneous Anisotropic Insert of a Rectangular Waveguide

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

We develop a physico-mathematical model describing excitation and distribution of electromagnetic waves in an anisotropic waveguide or resonator in the three-dimensional case. We develop a theoretical approach for discretization of the Maxwell equations in an arbitrary medium in the presence of bounding walls of a waveguide or resonator. The resulting system of linear algebraic equations for the electric-field components in an inhomogeneous anisotropic medium is solved by the method of biconjugate gradient. The results of calculating the electric field lines in the cross section of an anisotropic insert of a rectangular waveguide are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. T. Itoh, ed., Numerical Techniques for Microwave and Millimeter Wave Passive Structures, Wiley, New York (1989).

    Google Scholar 

  2. R. H. Janes, IEEE Trans. Microwave Theory Techn., 33, 1043 (1985).

    Google Scholar 

  3. L. P. Dunleavy and P. B. Katehi, IEEE Trans. Microwave Theory Techn., 36, 1758 (1988).

    Google Scholar 

  4. T. Angkaew, M. Matsuhara, and N. Kumagai, IEEE Trans. Microwave Theory Techn., 35, 117 (1987).

    Google Scholar 

  5. Z. Cendes, IEEE Spectrum 26, 29 (1989).

    Google Scholar 

  6. J. Svedin, IEEE Trans. Microwave Theory Techn., 37, 1708 (1989).

    Google Scholar 

  7. S. Nam, H. Ling, and T. Itoh, IEEE Trans. Microwave Theory Techn., 37, 2051 (1989).

    Google Scholar 

  8. P. So, Eswarappa, and W. Hoefer, IEEE Trans. Microwave Theory Techn., 37, 1877 (1989).

    Google Scholar 

  9. K. S. Yee, IEEE Trans. Antennas Propagat., 14, 302 (1966).

    Google Scholar 

  10. A. Taflove and M. E. Brodwin, IEEE Trans. Microwave Theory Techn., 23, 623 (1975).

    Google Scholar 

  11. A. Taflove and K. Umashancar, IEEE Trans. Electromagn. Compat., 25, 433 (1983).

    Google Scholar 

  12. D. H. Choi, and W. Hoefer, IEEE Trans. Microwave Theory Techn., 34, 1464 (1986).

    Google Scholar 

  13. G. G. Liang, Y. W. Liu, and K. K. Mei, IEEE Trans. Microwave Theory Techn., 37, 1949 (1989).

    Google Scholar 

  14. D. M. Sheen, S. M. Ali, M. D. Abouzahra, and J. A. Kong, IEEE Trans. Microwave Theory Techn., 38, 849 (1990).

    Google Scholar 

  15. T. Weiland, Particle Acceleration, 17, 2340 (1984).

    Google Scholar 

  16. T. Weiland, IEEE Trans. Magn., 21, 2340 (1984).

    Google Scholar 

  17. A. Christ and Y. Hartnagel, IEEE Trans. Microwave Theory Techn., 35, 688 1989).

    Google Scholar 

  18. S. M. Shul'ga, Vestn. Kharkovsk. Univ., Ser. Radioélectron., No. 427, 64 (1999).

  19. F. I. Fedorov, Optics of Anisotropic Media [in Russian], Akad. Nauk Beloruss. SSR, Minsk (1958).

    Google Scholar 

  20. L. D. Goldshtein and N. V. Zernov, Electromagnetic Field and Waves [in Russian], Sovetskoe Radio, Moscow (1971).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shul'ga, S.N., Fesenko, V.I. Field Structure in the Cross Section of a Ferrite Inhomogeneous Anisotropic Insert of a Rectangular Waveguide. Radiophysics and Quantum Electronics 45, 963–970 (2002). https://doi.org/10.1023/A:1023581416510

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023581416510

Keywords

Navigation