Skip to main content
Log in

A Laboratory Study of Strong Modulation of Radar Signals due to Long Waves on the Water Surface Covered with a Surfactant Film

  • Published:
Radiophysics and Quantum Electronics Aims and scope

Abstract

Modulation of radar backscatter due to long wind waves in the presence of surfactant films is studied for the first time under wave-tank conditions. It is found that the modulation coefficient can increase significantly with increasing surfactant concentration. We show that the existing theoretical models of modulation of free surface waves underestimate the observed modulation levels. It is demonstrated that the experimental radar Doppler shifts cannot be explained by only the scattering due to free gravity-capillary waves (GCW) and are also determined by coupled waves, which are nonlinear harmonics of the longer wind wave components. Estimates of the relative intensity of coupled waves in the wind-wave spectrum at the Bragg wavelength are presented. It is shown that the contribution of coupled waves is considerable and increases with increasing surfactant concentration, thus confirming the hypothesis for a “cascade” mechanism of strong backscatter modulation in the long-wave field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. S. J. Miller and O. H. Shemdin, J. Geophys. Res. C, 96, No. 2, 2749 (1991).

    Google Scholar 

  2. S. A. Ermakov, I. A. Sergievskaya, E. M. Zuikova, Yu. B. Shchegolkov, J. C. Scott, and N.R. Stapleton, Proc. IGARSS, 4, 1513 (2000).

    Google Scholar 

  3. J. Wu, J. Phys. Oceanography, 14, 138 (1984).

    Google Scholar 

  4. H. Mitsuyasy and T. Honda, in: O. Phillips and K. Hasselmann, eds., Wave Dynamics and Radio Probing of the Ocean Surface, Plenum Publ. Corp. (1986), p. 95.

  5. S. A. Ermakov, S. V. Kijashko, and J. C. Scott, “Laboratory study of the damping of parametric ripples in the presence of surfactant films,” Preprint No. 545, IAP RAS Press, Nizhny Novgorod (2000).

    Google Scholar 

  6. T. Hara and W. J. Plant, J. Geophys. Res. C, 99, No. 5, 9767 (1994).

    Google Scholar 

  7. R. Romeiser, W. Alpers, and V. Wismann, J. Geophys. Res. C, 102, No. 11, 25, 237-25, 250 (1997).

    Google Scholar 

  8. B. A. Hughes and H. L. Grant, J. Geophys. Res. C, 83, No. 1, 443 (1978).

    Google Scholar 

  9. B. A. Hughes and H. L. Grant, J. Geophys. Res. C, 83, No. 1, 455 (1978).

    Google Scholar 

  10. W. C. Keller and J. W. Wright, Radio Sci., 10, 139 (1975).

    Google Scholar 

  11. Yu. I. Troitskaya, “Quasi-linear model of modulation of short surface waves riding on a swell wave under the turbulent wind,” Preprint No. 544, IAP RAS Press, Nizhny Novgorod (2000).

    Google Scholar 

  12. S. A. Ermakov, E. N. Pelinovsky, and T. G. Talipova, Effect of Large-Scale Internal Wave on Sea Surface [in Russian], IAP RAS Press, Nizhny Novgorod (1982), p. 31.

    Google Scholar 

  13. E. N. Lucassen-Reynders and J. Lucassen, J. Adv. Coll. Int. C, 2, 347 (1969).

    Google Scholar 

  14. S. A. Ermakov and S. G. Salashin, Dokl. Akad. Nauk, 337, No. 1, 108 (1994).

    Google Scholar 

  15. M. S. Longuet-Higgins, J. Fluid Mech., 240, 659 (1992).

    Google Scholar 

  16. S. A. Ermakov, I. A. Sergievskaya, E. M. Zuikova, V. Yu. Goldblat, Yu. B. Schegolkov, and J. C. Scott, in: Sensing and Managing the Environment, Proc. of the IEEE International Geoscience and Remote Sensing Symposium, Seattle, Washington, USA (1998), Vol. 5, p. 2553.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ermakov, S.A., Sergievskaya, I.A. & Shchegolkov, Y.B. A Laboratory Study of Strong Modulation of Radar Signals due to Long Waves on the Water Surface Covered with a Surfactant Film. Radiophysics and Quantum Electronics 45, 942–957 (2002). https://doi.org/10.1023/A:1023577315602

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023577315602

Keywords

Navigation