Skip to main content
Log in

A Combined XPS/STM and TPD Study of the Chemisorption and Reactions of Methyl Mercaptan at a Cu(110) Surface

  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Despite the structural similarities between methanol and methyl mercaptan (CH3SH), replacing the oxygen atom by sulfur has a profound effect on their chemistry at copper surfaces. In a combined STM, XPS and TPD study of the reaction of methyl mercaptan with clean and partially oxidised Cu(110) surfaces we have found that unlike methanol, the scission of the SH bond (both in the presence of and in the absence of oxygen) to give adsorbed mercaptide (CH3S(a)) results in a restructuring of the surface. Low concentrations of adsorbed mercaptide (< 1 × 1014 cm-2) result in a severe degradation of the STM image due to the high mobility of the surface adlayer. A stable surface can be regained by increasing the concentration of mercaptide or the presence of another adsorbate such as oxygen. The reconstructed surface is characterised by very narrow terraces (typically 10-15Å wide) orientated mainly in the 〈1¯10〉 direction with a “zig-zag” structure. Higher resolution images of the terraces reveal an atomic scale structure with a c(2 × 2) unit cell, each cell containing (in total) two bright features. The XPS data confirm that mercaptide is present and show that the concentration at which islands of mercaptide become visible in the STM images is approximately 3 × 1014 cm-2. At a surface concentration of 5.1 × 1014 cm-2 the c(2 × 2) structure is seen to be complete, consistent with the c(2 × 2) unit cell containing two mercaptide species. On heating to 450K the mercaptide dissociates to give chemisorbed sulfur adatoms and methane. The latter implies that the hydrogen formed when the methyl mercaptan dissociates remains chemisorbed at the surface until removed by reaction with the methyl groups. At pre-oxidised surfaces where chemisorbed hydrogen is removed as water, mercaptide decomposition leads to ethane desorption with minor methane and ethane components, the latter indicating that methyl dehydrogenation is possible at the copper surface. STM shows that following the decomposition of the mercaptide adlayer the copper surface regains its original structure of broad terraces (typically 100-200Å wide), although a monolayer of chemisorbed sulfur is now present.

Oxygen chemisorption is completely inhibited by mercaptide concentrations of 5 × 1014 cm-2 but occurs at lower concentrations. The STM images show that the mercaptide and oxygen adsorbates form separate islands, in contrast to the coadsorption of hydrogen sulfide and oxygen. The influence of oxygen on the thermal desorption of mercaptide is discussed in the light of the structural data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A.F. Carley, P.R. Davies, R.V. Jones, K.R. Harikumar, G.U. Kulkarni and M.W. Roberts, Surf. Sci. 447 (2000) 39.

    Google Scholar 

  2. A.F. Carley and M.W. Roberts, Proc. Roy. Soc. Lond. A 363 (1978) 403.

    Google Scholar 

  3. J.H. Scofield, J. Elec. Spec. Rel. Phen. 8 (1976) 129.

    Google Scholar 

  4. T.E. Madey, J.T. YatesJr and N.E. Erickson, Chem. Phys. Lett. 19 (1973) 487.

    Google Scholar 

  5. R.F. Reilman, A. Msezane and S.T. Manson, J. Elec. Spec. Rel. Phen. 8 (1976) 389.

    Google Scholar 

  6. B.A. Sexton and G.L. Nyberg, Surf. Sci. 165 (1986) 251.

    Google Scholar 

  7. P.W. Murray, F. Besenbacher and I. Stensgaard, Israel J. Chem. 36 (1996) 25.

    Google Scholar 

  8. F.M. Leibsle, S.M. Francis, S. Haq and M. Bowker, Surf. Sci. 318 (1994) 46.

    Google Scholar 

  9. C.T. Au, A.F. Carley and M.W. Roberts, Phil. Trans. Roy. Soc. A 318 (1986) 61.

    Google Scholar 

  10. M.W. Roberts, Chem. Soc. Rev. 18 (1989) 451.

    Google Scholar 

  11. M.W. Roberts, Surf. Sci. 300 (1994) 769.

    Google Scholar 

  12. A.F. Carley, P.R. Davies, M.W. Roberts and D. Vincent, Top. Catal. 1 (1994) 35.

    Google Scholar 

  13. X.C. Guo and R.J. Madix, Faraday Discuss. (1996) 139.

  14. A.F. Carley, P.R. Davies, R.V. Jones, K.R. Harikumar, G.U. Kulkarni and M.W. Roberts, Top. Catal. 11 (2000) 299.

    Google Scholar 

  15. A.F. Carley, P.R. Davies, R.V. Jones, K.R. Harikumar and M.W. Roberts, Chem. Commun. (2000) 185.

  16. A.F. Carley, P.R. Davies, P.H. Griffiths, M.W. Roberts, B.P. Williams and N. Young (in preparation).

  17. F. Jensen, F. Besenbacher, E. Laesgaard and I. Stensgaard, Phys. Rev. B: Cond. Mat. 41 (1990) 10233.

    Google Scholar 

  18. A.F. Carley, P.R. Davies, K.R. Harikumar, R.V. Jones and M.W. Roberts (in preparation).

  19. L. Wilde, N. Pangher and J. Haase, Surf. Sci. 347 (1996) 33.

    Google Scholar 

  20. D.T. Vu and K.A.R. Mitchell, Phys. Rev. B: Cond. Mat. 49 (1994) 11515.

    Google Scholar 

  21. M. Kostelitz and J. Oudar, Surf. Sci. 27 (1971) 176.

    Google Scholar 

  22. I. Stensgaard, L. Ruan, F. Besenbacher, F. Jensen and E. Laegsgaard, Surf. Sci. 270 (1992) 81.

    Google Scholar 

  23. S.M. Driver and D.P. Woodruff, Surf. Sci. 457 (2000) 11.

    Google Scholar 

  24. M.S. Kariapper, G.F. Grom, G.J. Jackson, C.F. McConville and D.P. Woodruff, J. Phys. Conden. Mat. 10 (1998) 8661.

    Google Scholar 

  25. A. Imanishi, S. Takenaka, T. Yokoyama, Y. Kitajima and T. Ohta, J. De Physique IV 7 (1997) 701.

    Google Scholar 

  26. R.W.G. Wykoff, Crystal Structures (Interscience, London, 1948).

    Google Scholar 

  27. A.F. Wells, Structural Inorganic Chemistry, 4th edn (Oxford, UK, 1975).

    Google Scholar 

  28. R. McGrath, A.A. Macdowell, T. Hashizume, F. Sette and P.H. Citrin, Phys. Rev. Lett. 64 (1990) 575.

    PubMed  Google Scholar 

  29. C.C. Bahr, J.J. Barton, Z. Hussain, S.W. Robey, J.G. Tobin and D.A. Shirley, Phys. Rev. B: Cond. Mat. 35 (1987) 3773.

    Google Scholar 

  30. H.C. Zeng, R.N.S. Sodhi and K.A.R. Mitchell, Surf. Sci. 177 (1986) 329.

    Google Scholar 

  31. N.P. Prince, D.L. Seymour, M.J. Ash win, C.F. McConville, D.P. Woodruff and R.G. Jones, Surf. Sci. 230 (1990) 13.

    Google Scholar 

  32. A. Atrei, A.L. Johnson and D.A. King, Surf. Sci. 254 (1991) 65.

    Google Scholar 

  33. A. Imanishi, K. Isawa, F. Matsui, T. Tsuduki, T. Yokoyama, H. Kondoh, Y. Kitajima and T. Ohta, Surf. Sci. 407 (1998) 282.

    Google Scholar 

  34. A.F. Carley, P.R. Davies and M.W. Roberts, Chem. Commun. (1998) 1793.

  35. P.R. Davies and G.G. Mariotti, Chem. Commun. (1996) 2319.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip R. Davies.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carley, A.F., Davies, P.R., Jones, R.V. et al. A Combined XPS/STM and TPD Study of the Chemisorption and Reactions of Methyl Mercaptan at a Cu(110) Surface. Topics in Catalysis 22, 161–172 (2003). https://doi.org/10.1023/A:1023559516485

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023559516485

Navigation