Skip to main content
Log in

Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2

  • Published:
Journal of Theoretical Probability Aims and scope Submit manuscript

Abstract

Let {B t ,t∈[0,1]} be a fractional Brownian motion with Hurst parameter H > 1/2. Using the techniques of the Malliavin calculus we show that the trajectories of the indefinite divergence integral ∫t 0 u s δB s belong to the Besov space ℬ α p,q for all \(q \geqslant 1,\frac{1}{p} < \alpha < H\), provided the integrand u belongs to the space \(\mathbb{L}^{p,1} \). Moreover, if u is bounded and belongs to \(\mathbb{L}^{\delta ,2} \) for some even integer p≥2 and for some δ large enough, then the trajectories of the indefinite divergence integral ∫t 0 u s δB s belong to the Besov space ℬ Hp,∞ .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Alòs, E., León, J. A., and Nualart, D. (2001). Stratonovich stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Taiwan. J. Math. 5, 609–632.

    Google Scholar 

  2. Alòs, E., Mazet, O., and Nualart, D. (2000). Stochastic calculus with respect to fractional Brownian motion with Hurst parameter less than 1/2. Stochastic Process. Appl. 86, 121–139.

    Google Scholar 

  3. Alòs, E., Mazet, O., and Nualart, D. Stochastic calculus with respect to Gaussian processes. Ann. Probab.

  4. Alòs, E., and Nualart, D. Stochastic integration with respect to the fractional Brownian motion. To appear in Stochastics Stochastics Rep.

  5. Berkaoui, A., and Ouknine, Y. (1999). Régularité Besov des trajectoires du processus intégral de Skorohod. Bull. Sci. Math. 123, 643–66.

    Google Scholar 

  6. Carmona, P., and Coutin, L. Stochastic integration with respect to fractional Brownian motion. Preprint.

  7. Ciesielski, Z., Kerkyacharian, G., and Roynette, B. (1993). Quelques espaces fonctionnels associés à des processus gaussiens. Studia Math. 107, 171–204.

    Google Scholar 

  8. Dai, W., and Heyde, C. C. (1996). Itô's formula with respect to fractional Brownian motion and its application. J. Appl. Math. and Stoch. An. 9, 439–448.

    Google Scholar 

  9. Decreusefond, L., and Üstünel, A. S. (1998). Stochastic analysis of the fractional Brownian motion. Potential Anal. 10, 177–214.

    Google Scholar 

  10. Duncan, T. E., Hu, Y., and Pasik-Duncan, B. (2000). Stochastic calculus for fractional Brownian motion I. Theory. SIAM J. Control Optim. 38, 582–612.

    Google Scholar 

  11. Hu, Y., and Øksendal, B. Fractional white noise calculus and applications to finance. Preprint.

  12. Feyel, D., and de la Pradelle, A. (1996). Fractional integrals and Brownian processes. Potential Anal. 10, 273–288.

    Google Scholar 

  13. Kleptsyna, M. L., Kloeden, P. E., and Anh, V. V. (1999). Existence and uniqueness theorems for fBm stochastic differential equations. Problems Inform. Transmission 34, 332–341.

    Google Scholar 

  14. Lakhel, H., Ouknine, Y., and Tudor, C. A. Besov regularity for the indefinite Skorohod integral with respect to the fractional Brownian motion. To appear in Stochastics Stochastics Rep.

  15. Lin, S. J. (1995). Stochastic analysis of fractional Brownian motions. Stochastics Stochastics Rep. 55, 121–140.

    Google Scholar 

  16. Lorang, G. (1996). Régularité Besov des trajectoires du processus intégral de Skorohod. Studia Math. 117, 205–223.

    Google Scholar 

  17. Mémin, J., Mishura, Y., and Valkeila, E. (2001). Inequalities for the moments of Wiener integrals with respect to fractional Brownian motions. Statist. Probab. Lett. 51, 197–206.

    Google Scholar 

  18. Nualart, D. (1995). The Malliavin calculus and related topics. In Probability and Its Applications, Vol. 21, Springer, New York.

    Google Scholar 

  19. Pipiras, V., and Taqqu, M. S. (2000). Integration questions related to fractional Brownian motion. Probab. Theory Related Fields 118, 251–291.

    Google Scholar 

  20. Roynette, B. (1993). Mouvement brownien et espaces de Besov. Stochastics Stochastics Rep. 43, 221–260.

    Google Scholar 

  21. Russo, F., and Vallois, P. (1993). Forward, backward and symmetric stochastic integration. Probab. Theory Related Fields 97, 403–421.

    Google Scholar 

  22. Samko, S. G., Kilbas, A. A., and Marichev, O. I. (1993). Fractional Integrals and Derivatives, Gordon and Breach Science.

  23. Skorohod, A. V. (1975). On a generalization of a stochastic integral. Theory Probab. Appl. 20, 219–233.

    Google Scholar 

  24. Young, L. C. (1936). An inequality of the Hölder type connected with Stieltjes integration. Acta Math. 67, 251–282.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nualart, D., Ouknine, Y. Besov Regularity of Stochastic Integrals with Respect to the Fractional Brownian Motion with Parameter H > 1/2. Journal of Theoretical Probability 16, 451–470 (2003). https://doi.org/10.1023/A:1023530929480

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023530929480

Navigation