Skip to main content
Log in

Putative Functions of Nucleoside Diphosphate Kinase in Plants and Fungi

  • Published:
Journal of Bioenergetics and Biomembranes Aims and scope Submit manuscript

Abstract

The putative functions of NDP (nucleoside diaphosphate) kinases from various organisms focusing to fungi and plants are described. The biochemical reactions catalyzed by NDP kinase are as follows. (i) Phosphotransferring activity from mainly ATP to cognate NDPs generating nucleoside triphosphates (NTPs). (ii) Autophosphorylation activity from ATP and GTP. (iii) Protein kinase (phosphotransferring) activity phosphorylating such as myelin basic protein. NDP kinase could function to provide NTPs as a housekeeping enzyme. However, recent works proved possible functions of the NDP kinases in the processes of signal transduction in various organisms, as described below. By use of the extracts of the mycelia of a filamentous fungus Neurospora crassa blue-light irradiation could increase the phosphorylation of a 15-kDa protein, which was purified and identified to be NDP kinase (NDK-1). By use of the etiolated seedlings of Pisum sativum cv Alaska and Oryza sativa red-light irradiation of intact plants increased the phosphorylation of NDP kinase. However, successive irradiation by red–far-red reversed the reaction, indicating that phytochrome-mediated light signals are transduced to the phosphorylation of NDP kinase. NDP kinase localizing in mitochondria is encoded by nuclear genome and different from those localized in cytoplasm. NDP kinase in mitochondria formed a complex with succinyl CoA synthetase. In Spinicia oleraceae two different NDP kinases were detected in the chloroplast, and in Pisum sativum two forms of NDP kinase originated from single species of mRNA could be detected in the choloroplast. However, the function of NDP kinases in the choloroplast is not yet known. In Neurospora crassa a Pro72His mutation in NDP kinase (ndk-1 Pro72His) deficient in the autophosphorylation and protein kinase activity resulted in lacking the light-induced polarity of perithecia. In wild-type directional light irradiation parallel to the solid medium resulted in the formation of the perithecial beak at the top of perithecia, which was designated as “light-induced polarity of perithecia.” In wild-type in darkness the beak was formed at random places on perithecia, and in ndk Pro72His mutant the perithecial beak was formed at random places even under directional light illumination. The introduction of genomic DNA and cDNA for ndk-1 demonstrated that the wild-type DNAs suppressed the mutant phenotype. With all these results except for the demonstration in Neurospora, most of the phenomena are elusive and should be solved in the molecular levels concerning with NDP kinases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berg, P., and Joklik, W. K. (1953). Nature 172, 1008-1009.

    PubMed  Google Scholar 

  • Bominaar, A. A., Molijn, A. C., Pestel, M., Veron, M., and Van Hastert, P. J. M. (1993). EMBO J. 12, 2275-2279.

    PubMed  Google Scholar 

  • Capaldi, R. A., Gonzalez-Halphen, D., and Takamiya, S. (1986). FEBS Lett. 207, 11-17.

    PubMed  Google Scholar 

  • Choi, G., Yi, H., Lee, J., Kwon, Y. K., Soh, M. S., Shin, B., Luka, Z., Hahn, T.-R., and Song, P. S. (1999). Nature 401, 610-613.

    PubMed  Google Scholar 

  • Cumsky, M. G., Trueblood, C. E., Ko, C., and Poyton, R. O. (1987). Mol. Cell. Biol. 7: 3511-3519.

    PubMed  Google Scholar 

  • Dumas, C., Lascu, I., Moréra, S., Glaser, P., Fourme, R., Wallet, V., Lacombe, M.-L., Véron, M., and Janin, J. (1992). EMBO J. 11, 3203-3208.

    PubMed  Google Scholar 

  • Finan, P. M., White, I. R., Redpath, S. H., Findlay, J. B. C., and Millner, P. A. (1994). Plant Mol. Biol. 25, 59-67.

    PubMed  Google Scholar 

  • Fukuchi, T., Nikawa, J., Kimura, N., and Watanabe, K. (1993). Gene. 129, 141-146.

    PubMed  Google Scholar 

  • Hamada, T., and Hasunuma, K. (1994). J. Photochem. Photobiol. B 24, 163-167.

    Google Scholar 

  • Hamada, T., Hasunuma, K., and Komatsu, S. (1999). Biol. Pharm. Bull. 22, 122-126.

    PubMed  Google Scholar 

  • Hamada, T., Tanaka, N., Noguchi, T., Kimura, N., and Hasunuma, K. (1996). J. Photochem. Photobiol. B 33: 143-151.

    PubMed  Google Scholar 

  • Harris, N., Taylor, J. E., and Roberts, J. A. (1994). Plant Mol. Biol. 25, 739-742.

    PubMed  Google Scholar 

  • Hasunuma, K. (2000).Plant Morphol. 12, 39-51.

    Google Scholar 

  • Ito, K., Hamada, T., and Hasunuma, K. (1995). J. Photochem. Photobiol. B:28, 223-227.

    Google Scholar 

  • Izumiya, H., and Yamamoto, M. (1995). J. Biol. Chem. 270, 27589-27864.

    PubMed  Google Scholar 

  • Krebs, H. A., and Hems, R. (1953). Biochim. Biophys. Acta 12, 172-180.

    PubMed  Google Scholar 

  • Lacombe, M. L., Wallet, V., Troll, H., and Véron, M. (1990). J. Biol. Chem. 265, 10012-10018.

    PubMed  Google Scholar 

  • Lascu, I., Deville-Bonne, D., Glaser, P., and Véron, M. (1993). J. Biol. Chem. 268, 20268-20275.

    PubMed  Google Scholar 

  • Lübeck, J., and Soll, J. (1995). Planta 196: 668-673.

    PubMed  Google Scholar 

  • Moisyadi, S., Dharmasiri, S., Harrington, H. M., and Lukas, T. J. (1994). Plant Physiol. 104, 1401-1409.

    PubMed  Google Scholar 

  • Nato, A., Mirshahi, A., Tichtinsky, G., Mirshahi, M., Faure, J. P., Lavergne, D., de Buyser, J., Ducreux, G., and Henry, Y. (1997). Plant Physiol. 113, 801-807.

    PubMed  Google Scholar 

  • Nomura, T., Fukui, T., and Ichikawa, A. (1991). Biochim. Biophys. Acta 1077, 47-55.

    PubMed  Google Scholar 

  • Nomura, T., Yatsunami, K., Honda, A., Sugimoto, Y., Fukui, T., Zhang, J., Yamamoto, J., and Ichikawa, A. (1992). Arch. Biochem. Biophys. 297, 42-45.

    PubMed  Google Scholar 

  • Oda, K., and Hasunuma, K. (1994). FEBS Lett. 345, 162-166.

    PubMed  Google Scholar 

  • Oda, K., and Hasunuma, K. (1997). Mol. Gen Genet. 256, 593-601.

    PubMed  Google Scholar 

  • Ogura, T., Tanaka, N., Yabe, N., Komatsu, S., and Hasunuma, K. (1999a). Photochem. Photobiol. 69: 397-403.

    Google Scholar 

  • Ogura, Y., Yoshida, Y., Ichimura, K., Aoyagi, C., Yabe, N., and Hasunuma, K. (1999b). Eur. J. Biochem. 266, 709-714.

    PubMed  Google Scholar 

  • Ogura, Y., Yoshida, Y., Yabe, N., and Hasunuma, K. (2001). J. Biol. Chem. 276, 21228-21234.

    PubMed  Google Scholar 

  • Power, S. D., Lochrie, M. A., and Poyton, R. O. (1984). J. Biol. Chem. 259, 6575-6578.

    PubMed  Google Scholar 

  • Sellam, O., Veron, M., and Hildebrandt, M. (1995). Mol. Microbiol. 6, 79-85.

    Google Scholar 

  • Sommer, D., and Song, P. S. (1994). Biochim. Biophys. Acta. 1222, 464-470.

    PubMed  Google Scholar 

  • Sweetlove, L. J., Mowday, B., Hebestreit, H. F., Leaver, C. J., and Millar, A. H. (2001). FEBS Lett. 508, 272-276.

    PubMed  Google Scholar 

  • Tanaka, N., Ogura, T., Noguchi, T., Hirano, H., Yabe, N., and Hasunuma, K. (1998). J. Photochem. Photobiol. B 45, 113-121.

    Google Scholar 

  • Tepper, A. D., Dammann, H., Bominaa, A. A., and Véron, M. (1994). J. Biol. Chem. 269, 32175-32180.

    PubMed  Google Scholar 

  • Troll, H., Winckler, T., Lascu, I., Müller, N., Saurin, W., Véron, M., and Mutzel, R. (1993). J. Biol. Chem. 268, 25469-25475.

    PubMed  Google Scholar 

  • Wallet, V., Mutzel, R., Troll, H., Barzu, O., Wurster, B., Véron, M., and Lacombe, M. L. (1990). J. Natl. Cancer Inst. 82, 1199-1202.

    PubMed  Google Scholar 

  • Xu, Y., Moréra, S., Janin, J., and Cherfils, J. (1997a). Proc. Natl. Acad. Sci. U.S.A. 94, 3579-3583.

    PubMed  Google Scholar 

  • Xu, Y., Sellam, O., Morera, S., Sarfati, S., Biondi, R., Véron, M., and Janin, J. (1997b). Proc. Natl. Acad. Sci. U.S.A. 94, 7162-7165.

    PubMed  Google Scholar 

  • Yano, A., Shimazaki, T., Kato, A., Umeda, M., and Uchimiya, H. (1993). Plant Mol. Biol. 23, 1087-1093.

    PubMed  Google Scholar 

  • Yano, A., Umeda, M., and Uchimiya, H. (1995). Plant Mol. Biol. 27, 1053-1058.

    PubMed  Google Scholar 

  • Zhang, J., Fukui, T., and Ichikawa, A. (1995). Biochim. Biophys. Acta 1248, 19-26.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hasunuma, K., Yabe, N., Yoshida, Y. et al. Putative Functions of Nucleoside Diphosphate Kinase in Plants and Fungi. J Bioenerg Biomembr 35, 57–65 (2003). https://doi.org/10.1023/A:1023493823368

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023493823368

Navigation