Skip to main content

Combinatorial Evolution of High-Affinity Peptides That Bind to the Thomsen-Friedenreich Carcinoma Antigen

Abstract

Thomsen-Friedenreich (TF) antigen occurs on approximately 90% of human carcinomas, is likely involved in carcinoma cell homotypic aggregation, and has clinical value as a prognostic indicator and marker of metastasized cells. Previously, we isolated anti-TF antigen peptides from bacteriophage display libraries. These bound to TF antigen on carcinoma cells but were of low affinity and solubility. We hypothesized that peptide amino acid sequence changes would result in increased affinity and solubility, which would translate into improved carcinoma cell binding and increased inhibition of aggregation. The new peptides were more soluble and exhibited up to fivefold increase in affinity (Kd ≅ 60 nM). They bound cultured human breast and prostate carcinoma cells at low concentrations, whereas the earlier peptides did not. Moreover, the new peptides were potent inhibitors of homotypic aggregation. The maturated peptides will have expanded applications in basic studies of the TF antigen and particular utility as clinical carcinoma-targeting agents.

This is a preview of subscription content, access via your institution.

REFERENCES

  1. Bains, R., Furness, P. N., and Critchley, D. R. (1997). J. Pathol. 183: 272–280.

    Google Scholar 

  2. Baldus, S. E., Hanisch, F. G., Kotlarek, G. M., Zirbes, T. K., Thiele, J., Isenberg, J., et al. (1998). Cancer 82: 1019–1027.

    Google Scholar 

  3. Baldus, S. E., Zirbes, T. K., Hanisch, F. G., Kunze, D., Shafizadeh, S. T., Nolden, S., et al. (2000). Cancer 88: 1536–1543.

    Google Scholar 

  4. Barbas, C. F., 3rd, Hu, D., Dunlop, N., Sawyer, L., Cababa, D., Hendry, R. M., et al. (1994). Proc. Natl. Acad. Sci. USA 91: 3809–3813.

    Google Scholar 

  5. Bour-Dill, C., Gramain, M. P., Merlin, J. L., Marchal, S., and Guillemin, F. (2000). Cytometry 39: 16–25.

    Google Scholar 

  6. Brockhausen, I., Schutzbach, J., and Kuhns, W. (1998). Acta Anat. (Basel) 161: 36–78.

    Google Scholar 

  7. Cao, Y., Stosiek, P., Springer, G. F., and Karsten, U. (1996). Histochem. Cell Biol. 106: 197–207.

    Google Scholar 

  8. Chang, C. C., Chen, T. T., Cox, B. W., Dawes, G. N., Stemmer, W. P., Punnonen, J., et al. (1999). Nat. Biotechnol. 17: 793–797.

    Google Scholar 

  9. De Kroon, A. I., Soekarjo, M. W., De Gier, J., and De Kruijff, B. (1990). Biochemistry 29: 8229–8240.

    Google Scholar 

  10. Edge, A. S., and Spiro, R. G. (1987). J. Biol. Chem. 262: 16135–16141.

    Google Scholar 

  11. Fidler, I. J. (1975). Cancer Res. 35: 218–224.

    Google Scholar 

  12. Finne, J., and Krusius, T. (1979). Eur. J. Biochem. 102: 583–588.

    Google Scholar 

  13. Foote, J., and Eisen, H. N. (2000). Proc. Natl. Acad. Sci. USA 97: 10679–10681.

    Google Scholar 

  14. Fridman, R., Giaccone, G., Kanemoto, T., Martin, G. R., Gazdar, A. F., and Mulshine, J. L. (1990). Proc. Natl. Acad. Sci. USA 87: 6698–6702.

    Google Scholar 

  15. Garini, Y., Gil, A., Bar-Am, I., Cabib, D., and Katzir, N. (1999). Cytometry 35: 214–226.

    Google Scholar 

  16. Glinsky, V. V., Glinsky, G. V., Rittenhouse-Olson, K., Huflejt, M. E., Glinskii, O. V., Deutscher, S. L., et al. (2001). Cancer Res. 61: 4851–4857.

    Google Scholar 

  17. Glinsky, V. V., Huflejt, M. E., Glinsky, G. V., Deutscher, S. L., and Quinn, T. P. (2000). Cancer Res. 60: 2584–2588.

    Google Scholar 

  18. Hallahan, D. E., and Virudachalam, S. (1997). Proc. Natl. Acad. Sci. USA 94: 6432–6437.

    Google Scholar 

  19. Horoszewicz, J. S., Leong, S. S., Kawinski, E., Karr, J. P., Rosenthal, H., Chu, T. M., et al. (1983). Cancer Res. 43: 1809–1818.

    Google Scholar 

  20. Inohara, H., and Raz, A. (1995). Cancer Res. 55: 3267–3271.

    Google Scholar 

  21. Jain, R. K. (1989). J. Natl. Cancer Inst. 81: 570–576.

    Google Scholar 

  22. Jessup, J. M., Petrick, A. T., Toth, C. A., Ford, R., Meterissian, S., O'Hara, C. J., et al. (1993). Br. J. Cancer 67: 464–470.

    Google Scholar 

  23. Kim, C., Paulus, B. F., and Wold, M. S. (1994). Biochemistry 33: 14197–14206.

    Google Scholar 

  24. Komissarov, A. A., Calcutt, M. J., Marchbank, M. T., Peletskaya, E. N., and Deutsher, S. L. (1996). J. Biol. Chem. 271: 12241–12246.

    Google Scholar 

  25. Komissarov, A. A., Marchbank, M. T., Calcutt, M. J., Quinn, T. P., and Deutscher, S. L. (1997). J. Biol. Chem. 272: 26864–26870.

    Google Scholar 

  26. Li, G., Satyamoorthy, K., and Herlyn, M. (2001). Cancer Res. 61: 3819–3825.

    Google Scholar 

  27. Li, S., Spear, R. N., and Andrews, J. H. (1997). Appl. Environ. Microbiol. 63: 3261–3267.

    Google Scholar 

  28. Lotan, R., and Raz, A. (1983). Cancer Res. 43: 2088–2093.

    Google Scholar 

  29. Lotan, R., Skutelsky, E., Danon, D., and Sharon, N. (1975). J. Biol. Chem. 250: 8518–8523.

    Google Scholar 

  30. Lundquist, J. J., Debenham, S. D., and Toone, E. J. (2000). J. Org. Chem. 65: 8245–8250.

    Google Scholar 

  31. Luzzi, K. J., MacDonald, I. C., Schmidt, E. E., Kerkvliet, N., Morris, V. L., Chambers, A. F., et al. (1998). Am. J. Pathol. 153: 865–873.

    Google Scholar 

  32. Matarrese, P., Fusco, O., Tinari, N., Natoli, C., Liu, F. T., Semeraro, M. L., et al. (2000). Int. J. Cancer 85: 545–554.

    Google Scholar 

  33. Meromsky, L., Lotan, R., and Raz, A. (1986). Cancer Res. 46: 5270–5275.

    Google Scholar 

  34. Mickey, D. D., Stone, K. R., Wunderli, H., Mickey, G. H., Vollmer, R. T., and Paulson, D. F. (1977). Cancer Res. 37: 4049–4058.

    Google Scholar 

  35. Miller, D. S., Fricker, G., and Drewe, J. (1997). J. Pharmacol. Exp. Ther. 282: 440–444.

    Google Scholar 

  36. Millis, K. K., Lesko, S. A., and Gamcsik, M. P. (1997). Cancer Chemother. Pharmacol. 40: 101–111.

    Google Scholar 

  37. Mummert, M. E., and Voss, E. W. (1996). Mol. Immunol. 33: 1067–1077.

    Google Scholar 

  38. Naureckiene, S., Sleat, D. E., Lackland, H., Fensom, A., Vanier, M. T., Wattiaux, R., et al. (2000). Science 290: 2298–2301.

    Google Scholar 

  39. Panchuk-Voloshina, N., Haugland, R. P., Bishop-Stewart, J., Bhalgat, M. K., Millard, P. J., Mao, F., et al. (1999). J. Histochem. Cytochem. 47: 1179–1188.

    Google Scholar 

  40. Peletskaya, E. N., Glinsky, G., Deutscher, S. L., and Quinn, T. P. (1996). Mol. Divers. 2: 13–18.

    Google Scholar 

  41. Peletskaya, E. N., Glinsky, V. V., Glinsky, G. V., Deutscher, S. L., and Quinn, T. P. (1997). J. Mol. Biol. 270: 374–384.

    Google Scholar 

  42. Raz, A., and Lotan, R. (1981). Cancer Res. 41: 3642–3647.

    Google Scholar 

  43. Saiki, I., Naito, S., Yoneda, J., Azuma, I., Price, J. E., and Fidler, I. J. (1991). Clin. Exp. Metastasis 9: 551–566.

    Google Scholar 

  44. Schmidt, C. M., Settle, S. L., Keene, J. L., Westlin, W. F., Nickols, G. A., and Griggs, D. W. (1999). Clin. Exp. Metastasis 17: 537–544.

    Google Scholar 

  45. Scott, J. K., and Smith, G. P. (1990). Science 249: 386–390.

    Google Scholar 

  46. Smith, R. C., and Lange, R. C. (2001). Crit. Rev. Diagn. Imaging 42: 135–140.

    Google Scholar 

  47. Springer, G. F. (1984). Science 224: 1198–1206.

    Google Scholar 

  48. Springer, G. F., Cheingsong-Popov, R., Schirrmacher, V., Desai, P. R., and Tegtmeyer, H. (1983). J. Biol. Chem. 258: 5702–5706.

    Google Scholar 

  49. Springer, G. F., and Desai, P. R. (1977). Transplant. Proc. 9: 1105–1111.

    Google Scholar 

  50. Springer, G. F., Desai, P. R., and Banatwala, I. (1975). J. Natl. Cancer Inst. 54: 335–339.

    Google Scholar 

  51. Updyke, T. V., and Nicolson, G. L. (1986). Clin. Exp. Metastasis 4: 273–284.

    Google Scholar 

  52. Wang, B. L., Springer, G. F., and Carlstedt, S. C. (1997). J. Histochem. Cytochem. 45: 1393–1400.

    Google Scholar 

  53. Wohland, T., Friedrich, K., Hovius, R., and Vogel, H. (1999). Biochemistry 38: 8671–8681.

    Google Scholar 

  54. Yakushijin, Y., Steckel, J., Kharbanda, S., Hasserjian, R., Neuberg, D., Jiang, W., et al. (1998). Blood 91: 4282–4291.

    Google Scholar 

  55. Yelton, D. E., Rosok, M. J., Cruz, G., Cosand, W. L., Bajorath, J., Hellstrom, I., et al. (1995). J. Immunol. 155: 1994–2004.

    Google Scholar 

  56. Yu, J., and Smith, G. P. (1996). Methods Enzymol. 267: 3–27.

    Google Scholar 

  57. Zucker, R. M., and Price, O. (2001). Cytometry 44: 273–294.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Landon, L.A., Peletskaya, E.N., Glinsky, V.V. et al. Combinatorial Evolution of High-Affinity Peptides That Bind to the Thomsen-Friedenreich Carcinoma Antigen. J Protein Chem 22, 193–204 (2003). https://doi.org/10.1023/A:1023483232397

Download citation

  • Bacteriophage display
  • affinity maturation
  • carcinoma antigen
  • peptide
  • glycoepitope
  • fluorescence quenching
  • confocal microscopy