Skip to main content
Log in

Numerical Simulation of a Turbulent Thermal

  • Published:
Journal of Applied Mechanics and Technical Physics Aims and scope

Abstract

Ascent of a large-scale thermal in a standard atmosphere is calculated with the use of the Reynolds equations and the k model of turbulence, which takes into account temperature inhomogeneity and vorticity of the flow, and the Euler equations. Results of numerical calculations of a flow examined experimentally are presented. Gas-dynamic and turbulent flow parameters obtained in calculations and experiments are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. V. A. Andryshchenko, “Formation of a circular ring during ascending of heated air mass in a strati_ed atmosphere,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 2, 186-189 (1978).

    Google Scholar 

  2. V. A. Andrushchenko, Kh. S. Kestenboim, and S. A. Chudov, “Gas motion caused by a point explosion in a nonuniform atmosphere,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 6, 144-151 (1981).

    Google Scholar 

  3. Yu. A. Gostintsev, V. V. Lazarev, A. F. Solodovnik, and Yu. V. Shatskikh, “Turbulent thermal in stratified atmosphere,” Preprint, Inst. Chem. Phys., Chernogolovka (1985).

    Google Scholar 

  4. G. M. Makhviladze, O. I. Melikhov, and S. E. Yakush, “Ascent of a turbulent axisymmetric thermal in a nonuniform compressible atmosphere,” J. Appl. Mech. Tech. Phys., 30, No. 1, 58-63 (1989).

    Google Scholar 

  5. A. V. Konyukhov, M. V. Meshcheryakov, S. V. Utyuzhnikov, and L. A. Chudov, “Numerical simulation of a large-scale turbulent thermal,” Izv. Akad. Nauk SSSR, Mekh. Zhidk. Gaza, No. 3, 93-102 (1997).

    Google Scholar 

  6. Y. A. Dovgalyuk, M. A. Zatevakhin, and E. N. Stankova, “Numerical simulation of a buoayont thermic due to thermal using the turbulence model,” J. Appl. Meteorol., 33, No. 9, 1118-1126 (1994).

    Google Scholar 

  7. Yu. P. Glagoleva, V. A. Zhmailo, V. D. Mal’shakova, et al., “Formation of a circular vortex during ascending of a light gas in a heavy gas,” in: Numerical Methods of Continuum Mechanics (collected scientific papers) [in Russian], Vol. 5, No. 1, Inst. of Theor. and Appl. Mech., Sib. Div., Acad. of Sci. of the USSR, Novosibirsk (1974), pp. 38-52.

    Google Scholar 

  8. V. I. Polezhaev, “Numerical study of natural convection of liquids and gases,” in: Some Applications of Grids in Gas Dynamics [in Russian], Izd. Mosk. Univ., Moscow (1971), pp. 86-180.

    Google Scholar 

  9. H. C. Yee and A. Harten, “Implicit TVD schemes for hyperbolic conservation laws in curvilinear coordinates,” AIAA Paper No. 85-1513 (1985).

  10. R. G. Batt, R. A. Bigoni, and D. J. Rowland, “Temperature-field structure within atmospheric buoyant thermals,” J. Fluid Mech., 141, 1-25 (1984).

    Google Scholar 

  11. A. P. Darintsev, V. N. Zabavin, B. V. Zamyshlyaev, et al., “Special features of motion of heated air mass initially located in a spherical volume in the atmosphere,” in: Modern Problems of Mechanics of Continuous Media (collected scientific papers) [in Russian], Moscow Physicotechnical Inst., Moscow (1985), pp. 126-135.

    Google Scholar 

  12. A. T. Onufriev and S. A. Khristianovich, “Special features of turbulent motion in the vortex ring,” Dokl. Akad. Nauk SSSR, 229, 42-44 (1976).

    Google Scholar 

  13. N. E. Kochin, I. A. Kibel’, and N. V. Roze, Theoretical Hydromechanics [in Russian], Gostekhteoretizdat, Moscow-Leningrad (1948).

    Google Scholar 

  14. D. L. Book and T. P. Boris, “Flux-corrected transport. 1. SHASTA. A uid transport algorithm that works,” J. Comput. Phys., 11, No. 1, 38-69 (1973).

    Google Scholar 

  15. D. L. Book, T. P. Boris, K. Hain, “Flux-corrected transport. 2. Generalization of the methods,” J. Comput. Phys., 18, No. 3, 248-273 (1975).

    Google Scholar 

  16. S. Yu. Gorbunov, B. N. Gordeichik, A. P. Darintsev, et al., “The structure of a rising thermal,” J. Appl. Mech. Tech. Phys., 33, No. 5, 680-684 (1992).

    Google Scholar 

  17. Physics of Nuclear Explosion, Vol. 1: Development of Explosion [in Russian], Fizmatlit-Nauka, Moscow (1997).

  18. S. A. Adrianov, I. I. Vasil’chenko, V. N. Zabavin, et al., Numerical Simulation of Intense Vertical Vortices in Atmosphere [in Russian], Computing Center of the Russian Academy of Sciences, Moscow (2000).

    Google Scholar 

  19. A. S. Monin and A. M. Yaglom, Statistical Hydromechanics [in Russian], Nauka, Moscow (1965).

    Google Scholar 

  20. V. Levellen, “Method of invariant simulation,” in: W. Frost and T. Moulden (eds.), Handbook of Turbulence. Fundamentals and Applications, Plenum, New York (1977).

    Google Scholar 

  21. J. O. Hinze, Turbulence. An Introduction to its Mechanism and Theory, McGraw-Hill Book Company, New York (1959).

    Google Scholar 

  22. N. N. Yanenko, Method of Fractional Steps for Solving Multidimensional Problems of Mathematical Physics [in Russian], Nauka, Novosibirsk (1966).

    Google Scholar 

  23. E. Oran and J. Boris, Numerical Simulation of Reactive Flow, Elsevier, New York (1987).

    Google Scholar 

  24. A. T. Onufriev, “Theory of the motion of a vortex ring under gravity. Rise of the cloud from a nuclear explosion,” J. Appl. Mech. Tech. Phys., 8, No. 2, 1-7 (1967).

    Google Scholar 

  25. J. Schetz, Injection and Mixing in Turbulent Flow, Inst. of Aeronaut. and Astronaut., New York (1980).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chuprin, I.A., Shcherbin, M.D. Numerical Simulation of a Turbulent Thermal. Journal of Applied Mechanics and Technical Physics 44, 355–364 (2003). https://doi.org/10.1023/A:1023481123122

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023481123122

Navigation