Skip to main content
Log in

Antibodies to Dopamine as Neuromodulators of Behavioral Responses of Mice of Different Genotypes

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The possibility of long-term changes in the innate characteristics of the behaviour of mice of different genotypes (C57Bl/6 and BALB/c) after active immunization with dopamine-BSA conjugates was studied. These experiments revealed significant differences in the effects of anti-dopamine antibody on behavioral responses in an open field and neurotransmitter contents of brain structures in mice of different lines. Immunization with the dopamine-protein conjugate led to increases in the functional activity of the corresponding brain receptors, to different extents in mice of different lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. L. A. Basharova, V. A. Evseev, L. A. Vetrilé, et al., “Induction of autoantibodies to serotonin and catecholamines with chronically morphine-treated rats with withdrawal syndrome,” Byull. Éksperim. Biol. Med., 115, No. 5, 469 (1993).

    Google Scholar 

  2. V. A. Evseev, L. A. Basharova, L. A. Vetrilé, et al., “Comparative analysis of the effects of systemic and intraventricular antibodies to serotonin on behavioral reactions and nociceptive sensitivity in animals,” Zh. Vyssh. Nerv. Deyat., 46, No. 1, 129 (1996).

    Google Scholar 

  3. V. A. Evseev, N. A. Trekova, L. A. Vetrilé, et al., “The neuromodulatory effects of antibodies to serotonin on behavioral reactions, CNS neurotransmitter levels, and the ligand-binding activity central serotonin receptors in C57Bl/6 and BALB/c mice,” Byull. Éksperim. Biol. Med., 132, No. 7, 26 (2001).

    Google Scholar 

  4. S. V. Zaitsev, M. G. Sergeeva, and S. D. Varfolomeev, “Radioreceptor analysis: theoretical bases of the method,” Bioorg. Khim., No. 3, 370 (1985).

  5. N. A. Krupina, E. V. Popkova, I. N. Orlova, et al., “The effects of active immunization with a conjugate of dopamine and bovine serum albumin on the development of experimental MPTP-induced depressive syndrome and monoamine metabolism in the rat brain,” Zh. Vyssh. Nerv. Deyat., 50, No. 2, 287 (2000).

    Google Scholar 

  6. O. I. Mikovskaya, L. A Vetrilé, N. A. Trekova, et al., “Modulation by antibodies to serotonin of the behavioral responses of mice of different genotypes,” Zh. Vyssh. Nerv. Deyat., 51, No. 2, 190 (2001).

    Google Scholar 

  7. Yu. V. Skrinskaya and É. M. Nikulina, “Genotypic differences in brain dopamine metabolism and dopamine-dependent forms of behavior in mice,” Genetika, 24, No. 7, 1321 (1988).

    Google Scholar 

  8. Yu. V. Skrinskaya and É. M. Nikulina, “Effects of stimulation of dopamine receptors on motor and stereotypic activity of mice of different genotypes,” Zh. Vyssh. Nerv. Deyat., 42, No. 3, 549 (1992).

    Google Scholar 

  9. N. A. Trekova, L. A. Basharova, L. A. Vetrilé, et al., “Effects of antibodies to serotonin on a conditioned passive avoidance response in rats,” Zh. Vyssh. Nerv. Deyat., 45, No. 3, 596 (1995).

    Google Scholar 

  10. N. A. Trekova, L. A. Vetrilé, L. A. Bahsarova, et al., “Antibodies to dopamine: effects on behavior in an open field, pain sensitivity, CNS monoamine contents, and the functional activity of immunocytes in C57Bl/6 mice,” Zh. Vyssh. Nerv. Deyat., 49, No. 5, 799 (1999).

    Google Scholar 

  11. N. A. Trekova, T. G. Khlopushina, L. A. Basharova, et al., “Effects of antibodies to serotonin on the behavior of C57Bl/6 mice in an open field and monoamine contents in brain structures,” Zh. Vyssh. Nerv. Deyat., 48, No. 2, 251 (1998).

    Google Scholar 

  12. A. Yu. Shemanov, I. L. Miroshnichenko, V. S. Kudrin, et al., “Effects of L-3,4-dihydroxyphenylalanine on tyrosine hydroxylation and the levels of biogenic amines and their metabolites in synaptosomes from the striate body of the rat,” Neirokhimiya, 7, No. 3, 323 (1988).

    Google Scholar 

  13. A. Y. Dunn, K. L. Elfvin, and C. W. Berridge, “Changes in plasma corticosterone and cerebral biogenic amines and their metabolites during training and testing of mice in passive avoidance behaviour,” Behav. Neural. Biol., 46, No. 3, 410 (1996).

    Google Scholar 

  14. A. Mendlin, F. S. Marten, and B. L. Jacobs, “Dopaminergic input is required for increases in serotonin output produced by behavioral activation: an in vivo microdialysis study,” Neurosci., 93, 897 (1999).

    Google Scholar 

  15. D. B. Schafer, “Measurement of receptor-ligand binding: theory and practice,” Lect. Notes. Biomatch., 48, 445 (1983).

  16. L. Ugedo, J. Grenhoff, and T. H. Hevensson, “Ritanserin, a 5-HT2 receptor antagonist, activates midbrain dopamine neurons by blocking serotonin inhibition,” Psychopharmacology, 98, 45 (1989).

    Google Scholar 

  17. P. C. Waldmeir and A. A. Delini-Stula, “Serotonin-dopamine interactions in nigrostriatal system,” Eur. J. Pharmacol., 55, 363 (1979).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evseev, V.A., Mikovskaya, O.I., Vetrilé, L.A. et al. Antibodies to Dopamine as Neuromodulators of Behavioral Responses of Mice of Different Genotypes. Neurosci Behav Physiol 33, 507–512 (2003). https://doi.org/10.1023/A:1023471402939

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023471402939

Keywords

Navigation